Question Number 197500 by yaslm last updated on 19/Sep/23
Commented by SANOGO last updated on 19/Sep/23
$${meeci}\:{bien} \\ $$
Answered by Mathspace last updated on 20/Sep/23
$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{−\mathrm{1}} ^{\mathrm{0}} \:{e}^{\mathrm{2}{x}−\mathrm{3}{y}+\mathrm{1}} {dxdy} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\int_{−\mathrm{1}} ^{\mathrm{0}} {e}^{−\mathrm{3}{y}+\mathrm{1}} {dy}\right){e}^{\mathrm{2}{x}} {dx} \\ $$$$={e}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\left[−\frac{\mathrm{1}}{\mathrm{3}}{e}^{−\mathrm{3}{y}} \right]_{−\mathrm{1}} ^{{o}} \right){e}^{\mathrm{2}{x}} {dx} \\ $$$$=−\frac{{e}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{e}^{\mathrm{3}} \right){e}^{\mathrm{2}{x}} {dx} \\ $$$$=\frac{{e}^{\mathrm{4}} −{e}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{x}} {dx} \\ $$$$=\frac{{e}^{\mathrm{4}} −{e}}{\mathrm{3}}\left[\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{{e}^{\mathrm{4}} −{e}}{\mathrm{6}}\left({e}^{\mathrm{2}} −\mathrm{1}\right) \\ $$