Menu Close

lim-x-sin-x-sin-1-1-x-




Question Number 197514 by cortano12 last updated on 20/Sep/23
      lim_(x→∞)  sin x sin^(−1) ((1/x))=?
$$\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\mathrm{x}\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)=? \\ $$
Answered by MM42 last updated on 20/Sep/23
(1/x)=t⇒lim_(t→0)  sin(1/t)×sin^(−1) t =0  tip  “ if   x→a  ;  ∣f∣<k & lim_(x→a) g=0⇒lim_(x→a)  f×g=0  ”
$$\frac{\mathrm{1}}{{x}}={t}\Rightarrow{lim}_{{t}\rightarrow\mathrm{0}} \:{sin}\frac{\mathrm{1}}{{t}}×{sin}^{−\mathrm{1}} {t}\:=\mathrm{0} \\ $$$${tip}\:\:“\:{if}\:\:\:{x}\rightarrow{a}\:\:;\:\:\mid{f}\mid<{k}\:\&\:{lim}_{{x}\rightarrow{a}} {g}=\mathrm{0}\Rightarrow{lim}_{{x}\rightarrow{a}} \:{f}×{g}=\mathrm{0}\:\:'' \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *