Menu Close

Question-197524




Question Number 197524 by sonukgindia last updated on 20/Sep/23
Answered by som(math1967) last updated on 20/Sep/23
2arctan((x/(1+(√(1+x^2 )))))  =arctan{(((2x)/(1+(√(1+x^2 ))))/(1−(x^2 /((1+(√(1+x^2 )))^2 ))))}  =arctan{((2x)/(1+(√(1+x^2 ))))×(((1+(√(1+x^2 )))^2 )/(2+2(√(1+x^2 ))))}  =arctan(((2x)/2))=arctanx
$$\mathrm{2arc}{tan}\left(\frac{{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right) \\ $$$$=\mathrm{arc}{tan}\left\{\frac{\frac{\mathrm{2}{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }}\right\} \\ $$$$=\mathrm{arc}{tan}\left\{\frac{\mathrm{2}{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}×\frac{\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right\} \\ $$$$=\mathrm{arc}{tan}\left(\frac{\mathrm{2}{x}}{\mathrm{2}}\right)=\mathrm{arc}{tanx} \\ $$
Answered by Mathspace last updated on 20/Sep/23
x=tant ⇒  2arctan((x/(1+(√(1+x^2 )))))  =2artan(((tant)/(1+(√(1+tan^2 t)))))  =2arctan(((tant)/(1+(1/(cost)))))  =2arctan(((cost tant)/(1+cost)))  =2arctan(((sint)/(1+cost)))  =2arctan(((2sin((t/2))cos((t/2)))/(2cos^2 ((t/2)))))  =2arctan(tan((t/2)))  =2.(t/2)=t=arctanx
$${x}={tant}\:\Rightarrow \\ $$$$\mathrm{2}{arctan}\left(\frac{{x}}{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right) \\ $$$$=\mathrm{2}{artan}\left(\frac{{tant}}{\mathrm{1}+\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} {t}}}\right) \\ $$$$=\mathrm{2}{arctan}\left(\frac{{tant}}{\mathrm{1}+\frac{\mathrm{1}}{{cost}}}\right) \\ $$$$=\mathrm{2}{arctan}\left(\frac{{cost}\:{tant}}{\mathrm{1}+{cost}}\right) \\ $$$$=\mathrm{2}{arctan}\left(\frac{{sint}}{\mathrm{1}+{cost}}\right) \\ $$$$=\mathrm{2}{arctan}\left(\frac{\mathrm{2}{sin}\left(\frac{{t}}{\mathrm{2}}\right){cos}\left(\frac{{t}}{\mathrm{2}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{t}}{\mathrm{2}}\right)}\right) \\ $$$$=\mathrm{2}{arctan}\left({tan}\left(\frac{{t}}{\mathrm{2}}\right)\right) \\ $$$$=\mathrm{2}.\frac{{t}}{\mathrm{2}}={t}={arctanx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *