Menu Close

Calcul-I-pi-2-0-ln-cost-1-sin-2-t-dt-




Question Number 197550 by Erico last updated on 21/Sep/23
Calcul   I=∫^( (π/2)) _( 0) ((ln(cost))/(1+sin^2 t))dt
CalculI=0π2ln(cost)1+sin2tdt
Answered by qaz last updated on 22/Sep/23
I=∫_0 ^(π/2) ((lncos t)/(2−cos^2 t))dt=−(1/2)∫_0 ^(π/2) ((lnsec^2 t)/(2sec^2 t−1))sec^2 tdt  =−(1/2)∫_0 ^(π/2) ((ln(1+tan^2 t))/(1+2tan^2 t))sec^2 tdt=−(1/2)∫_0 ^∞ ((ln(1+x^2 ))/(1+2x^2 ))dx  =−(1/(2(√2)))∫_0 ^∞ ((ln(1+(x^2 /2)))/(1+x^2 ))dx=−(1/(2(√2)))∫_0 ^∞ ((ln((1/2))+ln(2+x^2 )))/(1+x^2 ))dx  =(π/(4(√2)))ln2−(1/(2(√2)))∫_0 ^2 dt∫_0 ^∞ (dx/((1+x^2 )(t+x^2 )))  =(π/(4(√2)))ln2−(π/( 4(√2)))∫_0 ^2 (1/(t−1))(1−(1/( (√t))))dt  =(π/(4(√2)))(ln2−2ln(1+(√2)))
I=0π/2lncost2cos2tdt=120π/2lnsec2t2sec2t1sec2tdt=120π/2ln(1+tan2t)1+2tan2tsec2tdt=120ln(1+x2)1+2x2dx=1220ln(1+x22)1+x2dx=1220ln(12)+ln(2+x2))1+x2dx=π42ln212202dt0dx(1+x2)(t+x2)=π42ln2π42021t1(11t)dt=π42(ln22ln(1+2))

Leave a Reply

Your email address will not be published. Required fields are marked *