Question Number 197562 by universe last updated on 21/Sep/23
$$\:\:\mathrm{let}\:\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\:\mathrm{nsin}^{\mathrm{2n}+\mathrm{1}} \mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx}\:−\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\right)\mathrm{dx}\:\:\:=\:\:?\: \\ $$