Menu Close

let-f-n-x-nsin-2n-1-x-cos-x-then-the-value-of-lim-n-0-pi-2-f-n-x-dx-0-pi-2-lim-n-f-n-x-dx-




Question Number 197562 by universe last updated on 21/Sep/23
  let  f_n (x) = nsin^(2n+1) x cos x  then the value of    lim_(n→∞) ∫_0 ^(π/2) f_n (x) dx − ∫_0 ^(π/2) ( lim_(n→∞)  f_n (x))dx   =  ?
$$\:\:\mathrm{let}\:\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\:\mathrm{nsin}^{\mathrm{2n}+\mathrm{1}} \mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx}\:−\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\right)\mathrm{dx}\:\:\:=\:\:?\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *