Question Number 197578 by mr W last updated on 22/Sep/23
Commented by mr W last updated on 22/Sep/23
$${unsolved}\:{old}\:{question}\:{Q}#\mathrm{196915} \\ $$
Answered by mr W last updated on 22/Sep/23
$$\left.\mathrm{1}\right)\:{one}\:{digit}\:{numbers}: \\ $$$$\mathrm{8}\:\Rightarrow\:\mathrm{1}\:{number} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{2}\:{digit}\:{numbers}: \\ $$$$\mathrm{17},\mathrm{26},\mathrm{35},\mathrm{44},\mathrm{53},\mathrm{62},\mathrm{71},\mathrm{80}\:\Rightarrow\mathrm{8}\:{numbers} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:\mathrm{3}\:{digit}\:{numbers}: \\ $$$${abc}\:{with} \\ $$$${a}=\mathrm{1},\mathrm{2},\mathrm{3},…\mathrm{9} \\ $$$${b},{c}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},…\mathrm{9} \\ $$$$\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…\right)^{\mathrm{2}} \\ $$$$=\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }={x}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{2}} ^{{k}+\mathrm{2}} {x}^{{k}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{8}} \:{is}: \\ $$$${C}_{\mathrm{2}} ^{\mathrm{7}+\mathrm{2}} =\mathrm{36}\:\Rightarrow\mathrm{36}\:{numbers} \\ $$$$ \\ $$$$\left.\mathrm{4}\right)\:\mathrm{4}\:{digit}\:{numbers}: \\ $$$${abcd}\:{with} \\ $$$${a}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5} \\ $$$${b},{c},{d}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},…\mathrm{9} \\ $$$$\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +{x}^{\mathrm{5}} \right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…\right)^{\mathrm{3}} \\ $$$$=\frac{{x}\left(\mathrm{1}−{x}^{\mathrm{5}} \right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }={x}\left(\mathrm{1}−{x}^{\mathrm{5}} \right)\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{3}} ^{{k}+\mathrm{3}} {x}^{{k}} \\ $$$${coef}.\:{of}\:{x}^{\mathrm{8}} \:{is}: \\ $$$${C}_{\mathrm{3}} ^{\mathrm{7}+\mathrm{3}} −{C}_{\mathrm{3}} ^{\mathrm{2}+\mathrm{3}} =\mathrm{110}\:\Rightarrow\mathrm{110}\:{numbers} \\ $$$$ \\ $$$${totally}: \\ $$$$\mathrm{1}+\mathrm{8}+\mathrm{36}+\mathrm{110}=\mathrm{155}\:{numbers} \\ $$$$\Rightarrow{answer}\:{A} \\ $$