Menu Close

Question-197582




Question Number 197582 by cherokeesay last updated on 22/Sep/23
Answered by som(math1967) last updated on 23/Sep/23
Commented by som(math1967) last updated on 23/Sep/23
let rad of big semicircle=R   BO=R−1  r=R−1+R−1=2R−2  ⇒R=((r+2)/2)   OA^2 =r^2 +(R−1)^2   R^2 =r^2 +R^2 −2R+1  ⇒r^2 −r−2+1=0  ⇒r^2 −r−1=0  ⇒r=((1+(√5))/2) cm  (golden ratio)   R=(((√5)+1)/4) +1=(((√5)+5)/4)cm  Green area  =(1/2)π(((5+(√5))/4))^2 −(1/4)π×1^2 ×2−(1/4)×π×((((√5)+1)^2 )/4)  =(π/4){(((5+(√5))^2 )/8)−2−((((√5)+1)^2 )/4)}cm^2   =(π/4)×((2+6(√5))/8)cm^2   =(π/(16))×(3(√5)+1)cm^2
$${let}\:{rad}\:{of}\:{big}\:{semicircle}={R} \\ $$$$\:{BO}={R}−\mathrm{1} \\ $$$${r}={R}−\mathrm{1}+{R}−\mathrm{1}=\mathrm{2}{R}−\mathrm{2} \\ $$$$\Rightarrow{R}=\frac{{r}+\mathrm{2}}{\mathrm{2}} \\ $$$$\:{OA}^{\mathrm{2}} ={r}^{\mathrm{2}} +\left({R}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} ={r}^{\mathrm{2}} +{R}^{\mathrm{2}} −\mathrm{2}{R}+\mathrm{1} \\ $$$$\Rightarrow{r}^{\mathrm{2}} −{r}−\mathrm{2}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{r}^{\mathrm{2}} −{r}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:{cm}\:\:\left({golden}\:{ratio}\right) \\ $$$$\:{R}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}\:+\mathrm{1}=\frac{\sqrt{\mathrm{5}}+\mathrm{5}}{\mathrm{4}}{cm} \\ $$$${Green}\:{area} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{4}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\pi×\mathrm{1}^{\mathrm{2}} ×\mathrm{2}−\frac{\mathrm{1}}{\mathrm{4}}×\pi×\frac{\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\frac{\pi}{\mathrm{4}}\left\{\frac{\left(\mathrm{5}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }{\mathrm{8}}−\mathrm{2}−\frac{\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\right\}{cm}^{\mathrm{2}} \\ $$$$=\frac{\pi}{\mathrm{4}}×\frac{\mathrm{2}+\mathrm{6}\sqrt{\mathrm{5}}}{\mathrm{8}}{cm}^{\mathrm{2}} \\ $$$$=\frac{\pi}{\mathrm{16}}×\left(\mathrm{3}\sqrt{\mathrm{5}}+\mathrm{1}\right){cm}^{\mathrm{2}} \\ $$
Commented by cherokeesay last updated on 23/Sep/23
so nice !  thank you !
$${so}\:{nice}\:! \\ $$$${thank}\:{you}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *