Menu Close

f-x-f-1-x-f-x-




Question Number 197585 by Erico last updated on 23/Sep/23
f  (x)=f((1/x))  ⇒ f(x)=?
f(x)=f(1x)f(x)=?
Answered by EdwarT last updated on 24/Sep/23
−(1/x^2 )
1x2
Commented by mr W last updated on 24/Sep/23
have you checked your solution?  f(x)=−(1/x^2 )  f((1/x))=−x^2   but f′(x)=(2/x^3 ) ≠ f((1/x))
haveyoucheckedyoursolution?f(x)=1x2f(1x)=x2butf(x)=2x3f(1x)
Answered by Erico last updated on 24/Sep/23
May be like this  f(x)=2(√x)cos(((√3)/2)lnx−(π/3))
Maybelikethisf(x)=2xcos(32lnxπ3)
Answered by Frix last updated on 24/Sep/23
For x>0  f(x)=2(√x)sin ((2π+3(√3)ln x)/( 6))
Forx>0f(x)=2xsin2π+33lnx6
Answered by witcher3 last updated on 24/Sep/23
f′(x)=f((1/x))  f′′(x)=−(1/x^2 )f′((1/x))=−(1/x^2 )f(x)  ⇔x^2 f′′(x)+f(x)=0  f(x)=x^r   ⇒(r(r−1)+1)x^r =0  ⇒r^2 −r+1=0  r=((1+i(√3))/2),((1−i(√3))/2)  f(x)=x^(1/2) (ax^(i/( 2(√3))) +bx^(−(i/(2 (√3)))) )  =(√x)(asin(((ln(x))/(2 ))(√3))+bcos(((ln(x))/2)(√3))    f′(x)=f((1/x))  ⇒  (1/( (√x)))(((a/2)−(b/( 2))(√3))sin(((ln(x))/(2 ))](√3))+((b/2)+(a/( 2))(√3))cos(((ln(x))/(2 ))(√3)))  =(1/( (√x)))(asin(((ln((1/x)))/( 2))(√3))+bcos(((ln((1/x)))/2)(√3))),∀x>0  ⇒(a/2)−(b/( 2))(√3)=−a  (b/2)+(a/( 2))(√3)=b  b=a(√3)  f(x)=a(√x)(sin(((ln(x)(√3))/2))+(√3)cos(((ln(x)(√3))/2)))  =2a(√x)(sin(((ln(x)(√3))/2)+(π/3))),a∈R
f(x)=f(1x)f(x)=1x2f(1x)=1x2f(x)x2f(x)+f(x)=0f(x)=xr(r(r1)+1)xr=0r2r+1=0r=1+i32,1i32f(x)=x12(axi23+bxi23)=x(asin(ln(x)23)+bcos(ln(x)23)f(x)=f(1x)1x((a2b23)sin(ln(x)2]3)+(b2+a23)cos(ln(x)23))=1x(asin(ln(1x)23)+bcos(ln(1x)23)),x>0a2b23=ab2+a23=bb=a3f(x)=ax(sin(ln(x)32)+3cos(ln(x)32))=2ax(sin(ln(x)32+π3)),aR

Leave a Reply

Your email address will not be published. Required fields are marked *