Menu Close

how-many-natural-numbers-with-4-different-digits-are-divisible-by-3-




Question Number 197589 by mr W last updated on 23/Sep/23
how many natural numbers with 4  different digits are divisible by 3?
howmanynaturalnumberswith4differentdigitsaredivisibleby3?
Answered by mr W last updated on 24/Sep/23
A={1,4,7}  B={2,5,8}  C={3,6,9}  to select 3 non−zero digits such that  their sum is divisible by 3, there are   case 1: all digits from A or B or C                 ⇒3 way  case 2: one digit from each group                 ⇒3×3×3=27 ways  totally 3+27=30 ways    to select 4 non−zero digits such that  their sum is divisible by 3, there are   case 1: 2 digits from C, one from A and one from B                 ⇒3×3×3=27 ways  case 2: 2 digits from A and 2 from B                 ⇒3×3=9 ways  case 3: 3 digits from A and one from C                 ⇒1×3=3 ways  case 4: 3 digits from B and one from C                 ⇒1×3=3 ways  totally 27+9+3+3=42 ways    numbers of form pqrs: 42×4!=1008  numbers of form p0qr: 3×30×3!=540  totally: 1008+540=1548 ✓
A={1,4,7}B={2,5,8}C={3,6,9}toselect3nonzerodigitssuchthattheirsumisdivisibleby3,therearecase1:alldigitsfromAorBorC3waycase2:onedigitfromeachgroup3×3×3=27waystotally3+27=30waystoselect4nonzerodigitssuchthattheirsumisdivisibleby3,therearecase1:2digitsfromC,onefromAandonefromB3×3×3=27wayscase2:2digitsfromAand2fromB3×3=9wayscase3:3digitsfromAandonefromC1×3=3wayscase4:3digitsfromBandonefromC1×3=3waystotally27+9+3+3=42waysnumbersofformpqrs:42×4!=1008numbersofformp0qr:3×30×3!=540totally:1008+540=1548

Leave a Reply

Your email address will not be published. Required fields are marked *