Menu Close

Solve-the-equation-5x-2-14x-9-x-2-x-20-5-x-1-




Question Number 197753 by tri26112004 last updated on 27/Sep/23
Solve the equation:  (√(5x^2 +14x+9))−(√(x^2 −x−20))=5(√(x+1))
$${Solve}\:{the}\:{equation}: \\ $$$$\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}}−\sqrt{{x}^{\mathrm{2}} −{x}−\mathrm{20}}=\mathrm{5}\sqrt{{x}+\mathrm{1}} \\ $$
Answered by Frix last updated on 27/Sep/23
Squaring, transforming, solving, testing  ⇒  x_1 =8  x_2 =((5+(√(61)))/2)
$$\mathrm{Squaring},\:\mathrm{transforming},\:\mathrm{solving},\:\mathrm{testing} \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{1}} =\mathrm{8} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{5}+\sqrt{\mathrm{61}}}{\mathrm{2}} \\ $$
Commented by tri26112004 last updated on 27/Sep/23
can you show your solution
$${can}\:{you}\:{show}\:{your}\:{solution} \\ $$
Commented by Frix last updated on 27/Sep/23
(√a)−(√b)=(√c)  (√a)=(√b)+(√c)  a=b+2(√(bc))+c  a−(b+c)=2(√(bc))  (a−(b+c))^2 =4bc  a^2 +b^2 +c^2 −2(ab+ac+bc)=0  Now insert  a=5x^2 +14x+9  b=x^2 −x−20  c=25(x+1)  x^4 −((45x^3 )/4)+((33x^2 )/4)+((505x)/4)+126=0  (x−8)(x+(7/4))(x^2 −5x−9)=0  Test the solutions, some might be false due  to squaring
$$\sqrt{{a}}−\sqrt{{b}}=\sqrt{{c}} \\ $$$$\sqrt{{a}}=\sqrt{{b}}+\sqrt{{c}} \\ $$$${a}={b}+\mathrm{2}\sqrt{{bc}}+{c} \\ $$$${a}−\left({b}+{c}\right)=\mathrm{2}\sqrt{{bc}} \\ $$$$\left({a}−\left({b}+{c}\right)\right)^{\mathrm{2}} =\mathrm{4}{bc} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}\left({ab}+{ac}+{bc}\right)=\mathrm{0} \\ $$$$\mathrm{Now}\:\mathrm{insert} \\ $$$${a}=\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9} \\ $$$${b}={x}^{\mathrm{2}} −{x}−\mathrm{20} \\ $$$${c}=\mathrm{25}\left({x}+\mathrm{1}\right) \\ $$$${x}^{\mathrm{4}} −\frac{\mathrm{45}{x}^{\mathrm{3}} }{\mathrm{4}}+\frac{\mathrm{33}{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{505}{x}}{\mathrm{4}}+\mathrm{126}=\mathrm{0} \\ $$$$\left({x}−\mathrm{8}\right)\left({x}+\frac{\mathrm{7}}{\mathrm{4}}\right)\left({x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{9}\right)=\mathrm{0} \\ $$$$\mathrm{Test}\:\mathrm{the}\:\mathrm{solutions},\:\mathrm{some}\:\mathrm{might}\:\mathrm{be}\:\mathrm{false}\:\mathrm{due} \\ $$$$\mathrm{to}\:\mathrm{squaring} \\ $$
Commented by tri26112004 last updated on 28/Sep/23
Do you have another solution¿
$${Do}\:{you}\:{have}\:{another}\:{solution}¿ \\ $$
Commented by tri26112004 last updated on 28/Sep/23
Such as Using Inequality
$${Such}\:{as}\:{Using}\:{Inequality} \\ $$
Answered by Rasheed.Sindhi last updated on 28/Sep/23
(√(5x^2 +14x+9))−(√(x^2 −x−20))=5(√(x+1))  x^2 −x−20≥0 ∧ 5x^2 +14x+9≥0 ∧ x+1≥0  (x−5)(x+4)≥0  x−5≥ 0 ∧ x+4≥0  x≥5 ∧ x≥−4⇒x≥5.......(i)    5x^2 +14x+9≥0  (x+1)(5x+9)≥0  x≥−1∧x≥−(9/5)⇒x≥−1....(ii)  x+1≥0⇒x≥−1............(iii)    (i),(ii) & (iii):  x≥5 ∧ x≥−1  ⇒   x≥5    (√(5x^2 +14x+9)) >(√(x^2 −x−20))  5x^2 +14x+9 >x^2 −x−20  4x^2 +15x+29>0
$$\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}}−\sqrt{{x}^{\mathrm{2}} −{x}−\mathrm{20}}=\mathrm{5}\sqrt{{x}+\mathrm{1}} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{20}\geqslant\mathrm{0}\:\wedge\:\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}\geqslant\mathrm{0}\:\wedge\:{x}+\mathrm{1}\geqslant\mathrm{0} \\ $$$$\left({x}−\mathrm{5}\right)\left({x}+\mathrm{4}\right)\geqslant\mathrm{0} \\ $$$${x}−\mathrm{5}\geqslant\:\mathrm{0}\:\wedge\:{x}+\mathrm{4}\geqslant\mathrm{0} \\ $$$${x}\geqslant\mathrm{5}\:\wedge\:{x}\geqslant−\mathrm{4}\Rightarrow{x}\geqslant\mathrm{5}…….\left({i}\right) \\ $$$$ \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}\geqslant\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left(\mathrm{5}{x}+\mathrm{9}\right)\geqslant\mathrm{0} \\ $$$${x}\geqslant−\mathrm{1}\wedge{x}\geqslant−\frac{\mathrm{9}}{\mathrm{5}}\Rightarrow{x}\geqslant−\mathrm{1}….\left({ii}\right) \\ $$$${x}+\mathrm{1}\geqslant\mathrm{0}\Rightarrow{x}\geqslant−\mathrm{1}…………\left({iii}\right) \\ $$$$ \\ $$$$\left({i}\right),\left({ii}\right)\:\&\:\left({iii}\right): \\ $$$${x}\geqslant\mathrm{5}\:\wedge\:{x}\geqslant−\mathrm{1} \\ $$$$\Rightarrow\:\:\:{x}\geqslant\mathrm{5} \\ $$$$ \\ $$$$\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}}\:>\sqrt{{x}^{\mathrm{2}} −{x}−\mathrm{20}} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}\:>{x}^{\mathrm{2}} −{x}−\mathrm{20} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{15}{x}+\mathrm{29}>\mathrm{0} \\ $$$$ \\ $$
Commented by tri26112004 last updated on 28/Sep/23
Can you use the inequality¿
$${Can}\:{you}\:{use}\:{the}\:{inequality}¿ \\ $$
Commented by Rasheed.Sindhi last updated on 28/Sep/23
I′ve tried that but failed to get exact answer.
$${I}'{ve}\:{tried}\:{that}\:{but}\:{failed}\:{to}\:{get}\:{exact}\:{answer}. \\ $$
Commented by tri26112004 last updated on 28/Sep/23
But it has some beauty root  x=8...
$${But}\:{it}\:{has}\:{some}\:{beauty}\:{root} \\ $$$${x}=\mathrm{8}… \\ $$
Commented by Frix last updated on 28/Sep/23
The solution method doesn′t care whether  you like the solution or not.
$$\mathrm{The}\:\mathrm{solution}\:\mathrm{method}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{care}\:\mathrm{whether} \\ $$$$\mathrm{you}\:\mathrm{like}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{or}\:\mathrm{not}. \\ $$
Commented by tri26112004 last updated on 28/Sep/23
okay
$${okay} \\ $$
Answered by ajfour last updated on 28/Sep/23
5x^2 +14x+9=5(x^2 −x−20)                                     +19(x+1)+90  (√a)−(√b)=5(√c)  a=5b+19c+90  b=c^2 −3c−18  ⇒  a−b=4b+19c+90  Also   a=5(x+1)^2 +4(x+1)  (√a)+(√b)=((4b+19c+90)/(5(√c)))  2(√a)= ((25c+4b+19c+90)/(5(√c)))  100ac=(4b+44c+90)^2   100(5c^2 +4c)c={4(c^2 −3c−18)                                      +44c+90}^2   ⇒  500c^3 +400c^2       =(4c^2 +32c+18)^2   25c^2 (5c+4)=(2c^2 +16c+9)^2   this need to be solved  Thereafter    as   x+1=c  x=c−1
$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}=\mathrm{5}\left({x}^{\mathrm{2}} −{x}−\mathrm{20}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{19}\left({x}+\mathrm{1}\right)+\mathrm{90} \\ $$$$\sqrt{{a}}−\sqrt{{b}}=\mathrm{5}\sqrt{{c}} \\ $$$${a}=\mathrm{5}{b}+\mathrm{19}{c}+\mathrm{90} \\ $$$${b}={c}^{\mathrm{2}} −\mathrm{3}{c}−\mathrm{18} \\ $$$$\Rightarrow\:\:{a}−{b}=\mathrm{4}{b}+\mathrm{19}{c}+\mathrm{90} \\ $$$${Also}\:\:\:{a}=\mathrm{5}\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\left({x}+\mathrm{1}\right) \\ $$$$\sqrt{{a}}+\sqrt{{b}}=\frac{\mathrm{4}{b}+\mathrm{19}{c}+\mathrm{90}}{\mathrm{5}\sqrt{{c}}} \\ $$$$\mathrm{2}\sqrt{{a}}=\:\frac{\mathrm{25}{c}+\mathrm{4}{b}+\mathrm{19}{c}+\mathrm{90}}{\mathrm{5}\sqrt{{c}}} \\ $$$$\mathrm{100}{ac}=\left(\mathrm{4}{b}+\mathrm{44}{c}+\mathrm{90}\right)^{\mathrm{2}} \\ $$$$\mathrm{100}\left(\mathrm{5}{c}^{\mathrm{2}} +\mathrm{4}{c}\right){c}=\left\{\mathrm{4}\left({c}^{\mathrm{2}} −\mathrm{3}{c}−\mathrm{18}\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{44}{c}+\mathrm{90}\right\}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{500}{c}^{\mathrm{3}} +\mathrm{400}{c}^{\mathrm{2}} \\ $$$$\:\:\:\:=\left(\mathrm{4}{c}^{\mathrm{2}} +\mathrm{32}{c}+\mathrm{18}\right)^{\mathrm{2}} \\ $$$$\mathrm{25}{c}^{\mathrm{2}} \left(\mathrm{5}{c}+\mathrm{4}\right)=\left(\mathrm{2}{c}^{\mathrm{2}} +\mathrm{16}{c}+\mathrm{9}\right)^{\mathrm{2}} \\ $$$${this}\:{need}\:{to}\:{be}\:{solved} \\ $$$${Thereafter}\:\:\:\:{as}\:\:\:{x}+\mathrm{1}={c} \\ $$$${x}={c}−\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *