Menu Close

find-the-value-of-0-1-ln-1-1-x-2-2-x-2-dx-




Question Number 197821 by mnjuly1970 last updated on 30/Sep/23
      find the value  of :         Ω = ∫_0 ^( 1) ((  ln ( 1+ (1/x^( 2) ) ))/(2 + x^( 2) )) dx = ?
findthevalueof:Ω=01ln(1+1x2)2+x2dx=?
Answered by witcher3 last updated on 05/Oct/23
x→(1/x)  Ω=∫_1 ^∞ ((ln(1+x^2 ))/((2x^2 +1)))dx  Ω(a)=∫_1 ^∞ ((ln(1+ax^2 ))/((2x^2 +1))),Ω(a)=0  Ω′(a)=∫_1 ^∞ (x^2 /((1+ax^2 )(2x^2 +1)))  =∫_1 ^∞ ((2x^2 +1−(1+ax^2 ))/((2−a)(2x^2 +1)(1+ax^2 )))  =(1/(2−a)){∫_1 ^∞ (dx/(1+ax^2 )) −∫_1 ^∞ (dx/(1+2x^2 ))}  =(1/((2−a)(√a)))((π/2)−tan^(−1) ((√a)))−(1/((2−a)(√2)))((π/2)−tan^(−1) ((√2)))  −∫_0 ^1 ((tan^(−1) ((√a)))/( (√a)(2−a)))da  =−2∫_0 ^1 ((tan^(−1) (a))/(2−a^2 ))..can solved Li_2 ..  but non nice close formez
x1xΩ=1ln(1+x2)(2x2+1)dxΩ(a)=1ln(1+ax2)(2x2+1),Ω(a)=0Ω(a)=1x2(1+ax2)(2x2+1)=12x2+1(1+ax2)(2a)(2x2+1)(1+ax2)=12a{1dx1+ax21dx1+2x2}=1(2a)a(π2tan1(a))1(2a)2(π2tan1(2))01tan1(a)a(2a)da=201tan1(a)2a2..cansolvedLi2..butnonnicecloseformez

Leave a Reply

Your email address will not be published. Required fields are marked *