find-the-value-of-0-1-ln-1-1-x-2-2-x-2-dx- Tinku Tara September 30, 2023 Integration 0 Comments FacebookTweetPin Question Number 197821 by mnjuly1970 last updated on 30/Sep/23 findthevalueof:Ω=∫01ln(1+1x2)2+x2dx=? Answered by witcher3 last updated on 05/Oct/23 x→1xΩ=∫1∞ln(1+x2)(2x2+1)dxΩ(a)=∫1∞ln(1+ax2)(2x2+1),Ω(a)=0Ω′(a)=∫1∞x2(1+ax2)(2x2+1)=∫1∞2x2+1−(1+ax2)(2−a)(2x2+1)(1+ax2)=12−a{∫1∞dx1+ax2−∫1∞dx1+2x2}=1(2−a)a(π2−tan−1(a))−1(2−a)2(π2−tan−1(2))−∫01tan−1(a)a(2−a)da=−2∫01tan−1(a)2−a2..cansolvedLi2..butnonnicecloseformez Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-maximum-of-z-2-2z-3-Next Next post: Question-197820 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.