Question Number 197819 by mnjuly1970 last updated on 30/Sep/23
$$ \\ $$$$\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\:\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(β\mathrm{1}\right)^{{n}β\mathrm{1}} \:{H}_{\:\mathrm{2}{n}} }{{n}}\:=\:? \\ $$$${where},{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+…+\frac{\mathrm{1}}{{n}} \\ $$
Answered by witcher3 last updated on 04/Oct/23
$$\int_{\mathrm{0}} ^{\mathrm{1}} β\mathrm{x}^{\mathrm{n}β\mathrm{1}} \mathrm{ln}\left(\mathrm{1}β\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}} \\ $$$$\Sigma\left(β\mathrm{1}\right)^{\mathrm{n}β\mathrm{1}} \frac{\mathrm{H}_{\mathrm{2n}} }{\mathrm{n}}=\mathrm{2}\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left(β\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{2n}β\mathrm{2}} \mathrm{ln}\left(\mathrm{1}β\mathrm{x}\right) \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} β\frac{\mathrm{ln}\left(\mathrm{1}β\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)} \\ $$$$=β\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\left(\mathrm{t}\right)β\mathrm{sin}\left(\mathrm{t}\right)\right)β\mathrm{ln}\left(\mathrm{cos}\left(\mathrm{t}\right)\right)\mathrm{dt} \\ $$$$=β\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\sqrt{\mathrm{2}}\mathrm{cos}\left(\mathrm{t}+\frac{\pi}{\mathrm{4}}\right)\right)β\mathrm{ln}\left(\mathrm{cos}\left(\mathrm{t}\right)\right)\mathrm{dt} \\ $$$$=β\mathrm{2ln}\left(\sqrt{\mathrm{2}}\right).\frac{\pi}{\mathrm{4}}β\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tg}\left(\mathrm{t}\right)\right)\mathrm{dt} \\ $$$$=β\frac{\mathrm{ln}\left(\mathrm{2}\right)\pi}{\mathrm{4}}+\mathrm{2G} \\ $$$$ \\ $$