Menu Close

find-the-value-of-n-1-1-n-1-H-2n-n-where-H-n-1-1-2-1-3-1-n-




Question Number 197819 by mnjuly1970 last updated on 30/Sep/23
        find the value of  :        𝛗 = Ξ£_(n=1) ^∞ (( (βˆ’1)^(nβˆ’1)  H_( 2n) )/n) = ?  where,H_n =1+(1/2) +(1/3) +...+(1/n)
$$ \\ $$$$\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\:\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(βˆ’\mathrm{1}\right)^{{n}βˆ’\mathrm{1}} \:{H}_{\:\mathrm{2}{n}} }{{n}}\:=\:? \\ $$$${where},{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+…+\frac{\mathrm{1}}{{n}} \\ $$
Answered by witcher3 last updated on 04/Oct/23
∫_0 ^1 βˆ’x^(nβˆ’1) ln(1βˆ’x)dx=(H_n /n)  Ξ£(βˆ’1)^(nβˆ’1) (H_(2n) /n)=2Ξ£_(nβ‰₯1) ∫_0 ^1 (βˆ’1)^n x^(2nβˆ’2) ln(1βˆ’x)  =2∫_0 ^1 βˆ’((ln(1βˆ’x))/((1+x^2 )))  =βˆ’2∫_0 ^(Ο€/4) ln(cos(t)βˆ’sin(t))βˆ’ln(cos(t))dt  =βˆ’2∫_0 ^(Ο€/4) ln((√2)cos(t+(Ο€/4)))βˆ’ln(cos(t))dt  =βˆ’2ln((√2)).(Ο€/4)βˆ’2∫_0 ^(Ο€/4) ln(tg(t))dt  =βˆ’((ln(2)Ο€)/4)+2G
$$\int_{\mathrm{0}} ^{\mathrm{1}} βˆ’\mathrm{x}^{\mathrm{n}βˆ’\mathrm{1}} \mathrm{ln}\left(\mathrm{1}βˆ’\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}} \\ $$$$\Sigma\left(βˆ’\mathrm{1}\right)^{\mathrm{n}βˆ’\mathrm{1}} \frac{\mathrm{H}_{\mathrm{2n}} }{\mathrm{n}}=\mathrm{2}\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left(βˆ’\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{2n}βˆ’\mathrm{2}} \mathrm{ln}\left(\mathrm{1}βˆ’\mathrm{x}\right) \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} βˆ’\frac{\mathrm{ln}\left(\mathrm{1}βˆ’\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)} \\ $$$$=βˆ’\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\left(\mathrm{t}\right)βˆ’\mathrm{sin}\left(\mathrm{t}\right)\right)βˆ’\mathrm{ln}\left(\mathrm{cos}\left(\mathrm{t}\right)\right)\mathrm{dt} \\ $$$$=βˆ’\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\sqrt{\mathrm{2}}\mathrm{cos}\left(\mathrm{t}+\frac{\pi}{\mathrm{4}}\right)\right)βˆ’\mathrm{ln}\left(\mathrm{cos}\left(\mathrm{t}\right)\right)\mathrm{dt} \\ $$$$=βˆ’\mathrm{2ln}\left(\sqrt{\mathrm{2}}\right).\frac{\pi}{\mathrm{4}}βˆ’\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tg}\left(\mathrm{t}\right)\right)\mathrm{dt} \\ $$$$=βˆ’\frac{\mathrm{ln}\left(\mathrm{2}\right)\pi}{\mathrm{4}}+\mathrm{2G} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *