Menu Close

find-the-value-of-n-1-1-n-1-H-2n-n-where-H-n-1-1-2-1-3-1-n-




Question Number 197819 by mnjuly1970 last updated on 30/Sep/23
        find the value of  :        𝛗 = Ξ£_(n=1) ^∞ (( (βˆ’1)^(nβˆ’1)  H_( 2n) )/n) = ?  where,H_n =1+(1/2) +(1/3) +...+(1/n)
findthevalueof:Ο•=βˆ‘βˆžn=1(βˆ’1)nβˆ’1H2nn=?where,Hn=1+12+13+…+1n
Answered by witcher3 last updated on 04/Oct/23
∫_0 ^1 βˆ’x^(nβˆ’1) ln(1βˆ’x)dx=(H_n /n)  Ξ£(βˆ’1)^(nβˆ’1) (H_(2n) /n)=2Ξ£_(nβ‰₯1) ∫_0 ^1 (βˆ’1)^n x^(2nβˆ’2) ln(1βˆ’x)  =2∫_0 ^1 βˆ’((ln(1βˆ’x))/((1+x^2 )))  =βˆ’2∫_0 ^(Ο€/4) ln(cos(t)βˆ’sin(t))βˆ’ln(cos(t))dt  =βˆ’2∫_0 ^(Ο€/4) ln((√2)cos(t+(Ο€/4)))βˆ’ln(cos(t))dt  =βˆ’2ln((√2)).(Ο€/4)βˆ’2∫_0 ^(Ο€/4) ln(tg(t))dt  =βˆ’((ln(2)Ο€)/4)+2G
∫01βˆ’xnβˆ’1ln(1βˆ’x)dx=HnnΞ£(βˆ’1)nβˆ’1H2nn=2βˆ‘nβ©Ύ1∫01(βˆ’1)nx2nβˆ’2ln(1βˆ’x)=2∫01βˆ’ln(1βˆ’x)(1+x2)=βˆ’2∫0Ο€4ln(cos(t)βˆ’sin(t))βˆ’ln(cos(t))dt=βˆ’2∫0Ο€4ln(2cos(t+Ο€4))βˆ’ln(cos(t))dt=βˆ’2ln(2).Ο€4βˆ’2∫0Ο€4ln(tg(t))dt=βˆ’ln(2)Ο€4+2G

Leave a Reply

Your email address will not be published. Required fields are marked *