Menu Close

Question-197834




Question Number 197834 by ajfour last updated on 30/Sep/23
Answered by mr W last updated on 01/Oct/23
Commented by mr W last updated on 03/Oct/23
let Δ=area of ΔABC (any type triangle)  ((HD)/(EC))=(p/1)  ⇒HD=pqb  ((GA)/(DG))=((AE)/(HD))=(((1−q)b)/(pqb))=(1/(pq))−(1/p)  ((DG)/(DA))=((DG)/(DG+GA))=(1/(1+(1/(pq))−(1/p)))  ((ΔBFG)/(ΔBDA))=((DG)/(DA))=(1/(1+(1/(pq))−(1/p)))  ((ΔBDA)/Δ)=(p/1)  ⇒ΔBDA=pΔ  ⇒ΔBFG=((pΔ)/(1+(1/(pq))−(1/p)))  similarly  ⇒ΔCEK=((qΔ)/(1+(1/(qr))−(1/q)))  ⇒ΔAFL=((rΔ)/(1+(1/(rp))−(1/r)))  blue area+pΔ+qΔ+rΔ−2(((pΔ)/(1+(1/(pq))−(1/p)))+((qΔ)/(1+(1/(qr))−(1/q)))+((rΔ)/(1+(1/(rp))−(1/r))))=Δ  ⇒((blue area)/Δ)=1+2((p/(1+(1/(pq))−(1/p)))+(q/(1+(1/(qr))−(1/q)))+(r/(1+(1/(rp))−(1/r))))−(p+q+r)
$${let}\:\Delta={area}\:{of}\:\Delta{ABC}\:\left({any}\:{type}\:{triangle}\right) \\ $$$$\frac{{HD}}{{EC}}=\frac{{p}}{\mathrm{1}} \\ $$$$\Rightarrow{HD}={pqb} \\ $$$$\frac{{GA}}{{DG}}=\frac{{AE}}{{HD}}=\frac{\left(\mathrm{1}−{q}\right){b}}{{pqb}}=\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}} \\ $$$$\frac{{DG}}{{DA}}=\frac{{DG}}{{DG}+{GA}}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}} \\ $$$$\frac{\Delta{BFG}}{\Delta{BDA}}=\frac{{DG}}{{DA}}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}} \\ $$$$\frac{\Delta{BDA}}{\Delta}=\frac{{p}}{\mathrm{1}} \\ $$$$\Rightarrow\Delta{BDA}={p}\Delta \\ $$$$\Rightarrow\Delta{BFG}=\frac{{p}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}} \\ $$$${similarly} \\ $$$$\Rightarrow\Delta{CEK}=\frac{{q}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{qr}}−\frac{\mathrm{1}}{{q}}} \\ $$$$\Rightarrow\Delta{AFL}=\frac{{r}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{rp}}−\frac{\mathrm{1}}{{r}}} \\ $$$${blue}\:{area}+{p}\Delta+{q}\Delta+{r}\Delta−\mathrm{2}\left(\frac{{p}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}}+\frac{{q}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{qr}}−\frac{\mathrm{1}}{{q}}}+\frac{{r}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{rp}}−\frac{\mathrm{1}}{{r}}}\right)=\Delta \\ $$$$\Rightarrow\frac{{blue}\:{area}}{\Delta}=\mathrm{1}+\mathrm{2}\left(\frac{{p}}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}}+\frac{{q}}{\mathrm{1}+\frac{\mathrm{1}}{{qr}}−\frac{\mathrm{1}}{{q}}}+\frac{{r}}{\mathrm{1}+\frac{\mathrm{1}}{{rp}}−\frac{\mathrm{1}}{{r}}}\right)−\left({p}+{q}+{r}\right) \\ $$
Answered by ajfour last updated on 01/Oct/23
Commented by ajfour last updated on 01/Oct/23
let △ABC has each side=2  with A origin O.  B((√3),−1)   C((√3),1)  line  PQ  r_1 =λ[(√3)−i(1−q)]  line QR  r_2 =(√3)−i+μ[−(r/( (√3)))+i(2−(r/2))]  line RP  r_3 =(√3)+i+ε[−((√3)−(p/( (√3))))−i(1+(p/2))]  P  lies on r_1 & r_3    , hence  (√3)λ=(√3)−ε((√3)−(p/( (√3))))  similarly  λ(1−q)=−1+ε(1+(p/2))  ⇒ 1−ε(1−(p/3))(1−q)=−1+ε(1+(p/2))  ε[(1+(p/2))+(1−q)(1−(p/3))=2  λ=1−((2(1−(p/3)))/((1+(p/2))+(1−q)(1−(p/3))))  area △PQR=(1/2)PQ×PR (vector)  ...pretty tedious this way  Thank you sir.
$${let}\:\bigtriangleup{ABC}\:{has}\:{each}\:{side}=\mathrm{2} \\ $$$${with}\:{A}\:{origin}\:{O}. \\ $$$${B}\left(\sqrt{\mathrm{3}},−\mathrm{1}\right)\:\:\:{C}\left(\sqrt{\mathrm{3}},\mathrm{1}\right) \\ $$$${line}\:\:{PQ} \\ $$$${r}_{\mathrm{1}} =\lambda\left[\sqrt{\mathrm{3}}−{i}\left(\mathrm{1}−{q}\right)\right] \\ $$$${line}\:{QR} \\ $$$${r}_{\mathrm{2}} =\sqrt{\mathrm{3}}−{i}+\mu\left[−\frac{{r}}{\:\sqrt{\mathrm{3}}}+{i}\left(\mathrm{2}−\frac{{r}}{\mathrm{2}}\right)\right] \\ $$$${line}\:{RP} \\ $$$${r}_{\mathrm{3}} =\sqrt{\mathrm{3}}+{i}+\epsilon\left[−\left(\sqrt{\mathrm{3}}−\frac{{p}}{\:\sqrt{\mathrm{3}}}\right)−{i}\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right)\right] \\ $$$${P}\:\:{lies}\:{on}\:{r}_{\mathrm{1}} \&\:{r}_{\mathrm{3}} \:\:\:,\:{hence} \\ $$$$\sqrt{\mathrm{3}}\lambda=\sqrt{\mathrm{3}}−\epsilon\left(\sqrt{\mathrm{3}}−\frac{{p}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${similarly} \\ $$$$\lambda\left(\mathrm{1}−{q}\right)=−\mathrm{1}+\epsilon\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\mathrm{1}−\epsilon\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)\left(\mathrm{1}−{q}\right)=−\mathrm{1}+\epsilon\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right) \\ $$$$\epsilon\left[\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right)+\left(\mathrm{1}−{q}\right)\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)=\mathrm{2}\right. \\ $$$$\lambda=\mathrm{1}−\frac{\mathrm{2}\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)}{\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right)+\left(\mathrm{1}−{q}\right)\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)} \\ $$$${area}\:\bigtriangleup{PQR}=\frac{\mathrm{1}}{\mathrm{2}}{PQ}×{PR}\:\left({vector}\right) \\ $$$$…{pretty}\:{tedious}\:{this}\:{way} \\ $$$${Thank}\:{you}\:{sir}. \\ $$$$ \\ $$$$\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *