Question Number 197847 by CrispyXYZ last updated on 01/Oct/23
$$\mathrm{If}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} <\mathrm{1},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$$\frac{{x}+{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}. \\ $$
Answered by Frix last updated on 01/Oct/23
$$\mathrm{In}\:\mathrm{polar}\:\mathrm{coordinates}: \\ $$$$\frac{{x}+{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}=\mathrm{cos}\:\theta\:+\mathrm{sin}\:\theta\:\in\left[−\sqrt{\mathrm{2}};\:\sqrt{\mathrm{2}}\right] \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{to} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{1}\:\mathrm{through}\:\left(\mathrm{0}\mid\mathrm{0}\right). \\ $$$$\theta_{\mathrm{1}} =\frac{\pi}{\mathrm{6}}\wedge\theta_{\mathrm{2}} =\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{Now}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{min},\:\mathrm{max}\:\mathrm{of}\:\mathrm{cos}\:\theta\:+\mathrm{sin}\:\theta \\ $$$$\mathrm{with}\:\frac{\pi}{\mathrm{6}}<\theta<\frac{\pi}{\mathrm{2}}\:\mathrm{which}\:\mathrm{are}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{find}\:\Rightarrow \\ $$$$\mathrm{1}<\frac{{x}+{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\leqslant\sqrt{\mathrm{2}} \\ $$
Answered by mr W last updated on 01/Oct/23
$$\boldsymbol{{q}}=\left(\mathrm{1},\mathrm{1}\right) \\ $$$$\boldsymbol{{p}}=\left({x},{y}\right) \\ $$$$\mathrm{cos}\:\theta=\frac{\boldsymbol{{p}}\centerdot\boldsymbol{{q}}}{\mid\boldsymbol{{p}}\mid\mid\boldsymbol{{q}}\mid}=\frac{{x}+{y}}{\:\sqrt{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} \\ $$$$\Rightarrow\frac{{x}+{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}=\sqrt{\mathrm{2}}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{0}\leqslant\theta<\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\frac{{x}+{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:\in\left(\mathrm{1},\sqrt{\mathrm{2}}\right] \\ $$
Commented by mr W last updated on 01/Oct/23
Commented by mr W last updated on 01/Oct/23
$${typo}! \\ $$$$\mathrm{0}\leqslant\theta<\frac{\pi}{\mathrm{4}}\:{is}\:{meant}. \\ $$
Commented by MM42 last updated on 01/Oct/23
$$\:\cancel{\lesseqgtr\underbrace{\boldsymbol{\mathrm{O}}}} \\ $$
Commented by MM42 last updated on 01/Oct/23
$${why}\:\:\:\theta<\frac{\pi}{\mathrm{2}}\:\:? \\ $$$${I}\:{think}\:\:\:\:\:\mathrm{0}\leqslant\theta<\frac{\pi}{\mathrm{4}} \\ $$