Question Number 197850 by tri26112004 last updated on 01/Oct/23
$${Solve}\:{the}\:{equation}: \\ $$$$\left(\mathrm{2}{sin}\:{x}\:−\:\mathrm{1}\right)\left(\mathrm{2}{cos}\:\mathrm{2}{x}\:+\:\mathrm{2}{sin}\:{x}\:+\mathrm{1}\right)\:=\:\mathrm{3}\left(\mathrm{1}−\mathrm{2}{cos}\:\mathrm{2}{x}\right) \\ $$
Answered by Frix last updated on 01/Oct/23
$$\mathrm{The}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$−\mathrm{2sin}^{\mathrm{3}} \:{x}\:−\mathrm{sin}^{\mathrm{2}} \:{x}\:+\mathrm{sin}\:{x}\:=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{sin}\:{x}\:=−\mathrm{1}\vee\mathrm{sin}\:{x}\:=\mathrm{0}\vee\mathrm{sin}\:{x}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}=\frac{\left(\mathrm{4}{n}−\mathrm{1}\right)\pi}{\mathrm{2}}\vee{x}={n}\pi\vee{x}=\frac{\left(\mathrm{12}{n}+\mathrm{1}\right)\pi}{\mathrm{6}}\vee{x}=\frac{\left(\mathrm{12}{n}+\mathrm{5}\right)\pi}{\mathrm{6}};\:{n}\in\mathbb{Z} \\ $$