Menu Close

Find-the-minimum-value-of-5t-2-8t-5-2-3-t-2-2t-2-3-where-2-3-lt-t-lt-2-3-




Question Number 197882 by CrispyXYZ last updated on 02/Oct/23
Find the minimum value of  ((5t^2 −8t+5)/((2+(√3))t^2 −2t+2−(√3)))  where 2−(√3)<t<2+(√3).
Findtheminimumvalueof5t28t+5(2+3)t22t+23where23<t<2+3.
Answered by mr W last updated on 03/Oct/23
((5t^2 −8t+5)/((2+(√3))t^2 −2t+2−(√3)))=(1/k), say  (2+(√3)−5k)t^2 −2(1−4k)t+2−(√3)−5k=0  Δ=(1−4k)^2 −(2+(√3)−5k)(2−(√3)−5k)≥0  (1−4k)^2 −(2−5k)^2 +3≥0  k(3k−4)≤0  ⇒0≤k≤(4/3) ⇒(3/4)≤(1/k)<+∞  ⇒((5t^2 −8t+5)/((2+(√3))t^2 −2t+2−(√3)))≥(3/4)=minimun  at t=((1−4k)/(2+(√3)−5k))=((1−((16)/3))/(2+(√3)−((20)/3)))=((14+3(√3))/(13))  2−(√3)<((14+3(√3))/(13))<2+(√3)
5t28t+5(2+3)t22t+23=1k,say(2+35k)t22(14k)t+235k=0Δ=(14k)2(2+35k)(235k)0(14k)2(25k)2+30k(3k4)00k43341k<+5t28t+5(2+3)t22t+2334=minimunatt=14k2+35k=11632+3203=14+331323<14+3313<2+3

Leave a Reply

Your email address will not be published. Required fields are marked *