Menu Close

find-the-sum-of-infinite-series-1-2-1-1-3-2-1-2-2-1-3-4-1-2-2-2-3-2-1-2-3-1-3-6-1-2-2-2-3-2-7-2-1-2-4-1-3-8-1-2-2-2-3-2-15-2-




Question Number 197880 by universe last updated on 02/Oct/23
find the sum of infinite series   (1/2^1 )∙(1/3^2 ) + (1/2^2 )∙(1/3^4 )(1^2 +2^2 +3^2 ) + (1/2^3 )∙(1/3^6 )(1^2 +2^2 +3^2 +...+7^2 )+  (1/2^4 )∙(1/3^8 )(1^2 +2^2 +3^2 +...+15^2 )+........
findthesumofinfiniteseries121132+122134(12+22+32)+123136(12+22+32++72)+124138(12+22+32++152)+..
Answered by qaz last updated on 02/Oct/23
Σ_(i=1) ^∞ (1/(18^i ))(Σ_(j=1) ^(2^i −1) j^2 )=(1/6)Σ_(i=1) ^∞ (1/(18^i ))∙2^i (2^i −1)(2^(i+1) −1)  =(1/6)Σ_(i=1) ^∞ (2∙((4/9))^i −3∙((2/9))^i +(1/9^i ))  =(1/6)(2∙((4/9)/(1−(4/9)))−3∙((2/9)/(1−(2/9)))+((1/9)/(1−(1/9))))=((243)/(1680))
i=1118i(2i1j=1j2)=16i=1118i2i(2i1)(2i+11)=16i=1(2(49)i3(29)i+19i)=16(249149329129+19119)=2431680
Commented by universe last updated on 03/Oct/23
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *