Menu Close

Question-197881




Question Number 197881 by Abdullahrussell last updated on 02/Oct/23
Commented by Frix last updated on 02/Oct/23
2−(√3)
$$\mathrm{2}−\sqrt{\mathrm{3}} \\ $$
Answered by Sutrisno last updated on 14/Oct/23
(((1+(√5))/4))−((((√5)−1)/4))=(1/2)  cos36°−sin18°=sin30°  2.cos36°.sin30°−sin18°=sin30°  sin66°−sin6°−sin18°=sin30°  sin66°−sin30°=sin18°+sin6°  2cos48°sin18°=2sin12°cos6°  −2cos132°sin18°=2sin12°cos6°  −cos132°sin18°−2sin12°cos6°=cos132°sin18°+sin12°cos6°  −cos132°sin18°+sin18°cos6°+cos132°sin12°−2sin12°cos6°=cos132°sin18°+sin18°cos36°+cos132°sin18°+sin12°cos6°  −(sin18°−sin12°)(cos132°−cos6°)=(sin18°+sin12°)(cos132°+cos6°)  2cos15°sin3°.2sin69°sin63°=2sin15°cos3°.2cos69°cos63°  ((sin3°sin63°sin69°)/(cos3°cos63°cos69°))=((sin15°)/(cos15°))  tan3°tan63°tan69°=tan15°  ((tan3°)/(tan21°tan27°))=tan15°
$$\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\right)−\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${cos}\mathrm{36}°−{sin}\mathrm{18}°={sin}\mathrm{30}° \\ $$$$\mathrm{2}.{cos}\mathrm{36}°.{sin}\mathrm{30}°−{sin}\mathrm{18}°={sin}\mathrm{30}° \\ $$$${sin}\mathrm{66}°−{sin}\mathrm{6}°−{sin}\mathrm{18}°={sin}\mathrm{30}° \\ $$$${sin}\mathrm{66}°−{sin}\mathrm{30}°={sin}\mathrm{18}°+{sin}\mathrm{6}° \\ $$$$\mathrm{2}{cos}\mathrm{48}°{sin}\mathrm{18}°=\mathrm{2}{sin}\mathrm{12}°{cos}\mathrm{6}° \\ $$$$−\mathrm{2}{cos}\mathrm{132}°{sin}\mathrm{18}°=\mathrm{2}{sin}\mathrm{12}°{cos}\mathrm{6}° \\ $$$$−{cos}\mathrm{132}°{sin}\mathrm{18}°−\mathrm{2}{sin}\mathrm{12}°{cos}\mathrm{6}°={cos}\mathrm{132}°{sin}\mathrm{18}°+{sin}\mathrm{12}°{cos}\mathrm{6}° \\ $$$$−{cos}\mathrm{132}°{sin}\mathrm{18}°+{sin}\mathrm{18}°{cos}\mathrm{6}°+{cos}\mathrm{132}°{sin}\mathrm{12}°−\mathrm{2}{sin}\mathrm{12}°{cos}\mathrm{6}°={cos}\mathrm{132}°{sin}\mathrm{18}°+{sin}\mathrm{18}°{cos}\mathrm{36}°+{cos}\mathrm{132}°{sin}\mathrm{18}°+{sin}\mathrm{12}°{cos}\mathrm{6}° \\ $$$$−\left({sin}\mathrm{18}°−{sin}\mathrm{12}°\right)\left({cos}\mathrm{132}°−{cos}\mathrm{6}°\right)=\left({sin}\mathrm{18}°+{sin}\mathrm{12}°\right)\left({cos}\mathrm{132}°+{cos}\mathrm{6}°\right) \\ $$$$\mathrm{2}{cos}\mathrm{15}°{sin}\mathrm{3}°.\mathrm{2}{sin}\mathrm{69}°{sin}\mathrm{63}°=\mathrm{2}{sin}\mathrm{15}°{cos}\mathrm{3}°.\mathrm{2}{cos}\mathrm{69}°{cos}\mathrm{63}° \\ $$$$\frac{{sin}\mathrm{3}°{sin}\mathrm{63}°{sin}\mathrm{69}°}{{cos}\mathrm{3}°{cos}\mathrm{63}°{cos}\mathrm{69}°}=\frac{{sin}\mathrm{15}°}{{cos}\mathrm{15}°} \\ $$$${tan}\mathrm{3}°{tan}\mathrm{63}°{tan}\mathrm{69}°={tan}\mathrm{15}° \\ $$$$\frac{{tan}\mathrm{3}°}{{tan}\mathrm{21}°{tan}\mathrm{27}°}={tan}\mathrm{15}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *