Menu Close

sin18-




Question Number 197908 by mathlove last updated on 03/Oct/23
sin18^° =?
$${sin}\mathrm{18}^{°} =? \\ $$
Answered by universe last updated on 03/Oct/23
sin (36°+54°) = sin 90°  36° + 54° = 90°   x = 18°   5x = 2x + 3x = 90°  2x = 90° −3x  sin 2x  =  sin (90° −3x)  sin 2x = cos 3x   2sin xcos x  =   4cos^3 x − 3cos x  2sin x  =  4cos^2 x −3  2sin x = 4−4sin^2 x − 3  4sin^2 x + 2sinx −1 = 0  sinx = ((−2 ±2(√5))/8)      sinx = ((−1± (√5))/4)    sin18°  =  (((√5) −1)/4)
$$\mathrm{sin}\:\left(\mathrm{36}°+\mathrm{54}°\right)\:=\:\mathrm{sin}\:\mathrm{90}° \\ $$$$\mathrm{36}°\:+\:\mathrm{54}°\:=\:\mathrm{90}°\: \\ $$$${x}\:=\:\mathrm{18}°\: \\ $$$$\mathrm{5}{x}\:=\:\mathrm{2}{x}\:+\:\mathrm{3}{x}\:=\:\mathrm{90}° \\ $$$$\mathrm{2}{x}\:=\:\mathrm{90}°\:−\mathrm{3}{x} \\ $$$$\mathrm{sin}\:\mathrm{2}{x}\:\:=\:\:\mathrm{sin}\:\left(\mathrm{90}°\:−\mathrm{3}{x}\right) \\ $$$$\mathrm{sin}\:\mathrm{2}{x}\:=\:\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\:\mathrm{2sin}\:{x}\mathrm{cos}\:{x}\:\:=\:\:\:\mathrm{4cos}^{\mathrm{3}} {x}\:−\:\mathrm{3cos}\:{x} \\ $$$$\mathrm{2sin}\:{x}\:\:=\:\:\mathrm{4cos}^{\mathrm{2}} {x}\:−\mathrm{3} \\ $$$$\mathrm{2sin}\:{x}\:=\:\mathrm{4}−\mathrm{4sin}^{\mathrm{2}} {x}\:−\:\mathrm{3} \\ $$$$\mathrm{4sin}^{\mathrm{2}} {x}\:+\:\mathrm{2sin}{x}\:−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{sin}{x}\:=\:\frac{−\mathrm{2}\:\pm\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{8}}\:\:\:\: \\ $$$$\mathrm{sin}{x}\:=\:\frac{−\mathrm{1}\pm\:\sqrt{\mathrm{5}}}{\mathrm{4}}\:\: \\ $$$$\mathrm{sin18}°\:\:=\:\:\frac{\sqrt{\mathrm{5}}\:−\mathrm{1}}{\mathrm{4}}\:\: \\ $$
Commented by mathlove last updated on 03/Oct/23
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *