Menu Close

I-m-0-1-2-m-x-3-m-n-m-1-2-n-x-3-n-dx-then-find-the-value-of-I-m-1-I-m-




Question Number 197919 by universe last updated on 04/Oct/23
      I_m      =    ∫_0 ^1 (((⌊2^m x⌋)/3^m ) Σ_(n=m+1) ^∞ ((⌊2^n x⌋)/3^n ))dx        then find the value of        I =   Σ_(m=1) ^∞ I_m   =  ?
Im=01(2mx3mn=m+12nx3n)dxthenfindthevalueofI=m=1Im=?
Answered by witcher3 last updated on 06/Oct/23
2^m x=t  ⇔I_m =(1/2^m )∫_0 ^2^m  (([t])/3^(2m) )Σ_(n≥m+1) (([2^(n−m) t])/3^(n−m) )  ⇒18^m I_m =∫_0 ^2^m  [t]Σ_(n≥1) (([2^n t])/3^n )dt  =Σ_(k=0) ^(2^m −1) ∫_k ^(k+1) k.Σ_(n≥1) (([2^n t])/3^n )dt,2^n t=y  =Σ_k Σ_n ∫_(2^n k) ^((k+1)2^n ) (k/6^n )[y]dy=18^m I_m   ∫_(2^n k) ^((k+1)2^n ) [y]dy=Σ_(j=0) ^(2^n −1) ∫_(2^n k+j) ^(2^n k+1+j) [y]dy  =Σ_(j=0) ^(2^n −1) 2^n k+jdy  =2^(2n) k+2^(n−1) (2^n −1)=  18^m I_m =Σ_k Σ_(n≥1) ((k(2^(2n) k+2^(n−1) (2^n −1))/6^n )  =Σ_k Σ_(n≥1) k^2 ((2/3))^n +(k/2).((2/3))^n −(k/2)((2/6))^n   =Σ_(k=0) ^(2^m −1) .(2k^2 +(3/4)k)=(((2^m −1)(2^m )(2^(m+1) −1))/3)+(3/4)2^(m−1) (2^m −1)  I_m =((2^(3m+1) −3.2^(2m) +2^m )/(3.18^m ))+((3.2^(2m−1) −3.2^m )/(4.18^m ))  I=Σ_(m≥1) (2/3).((2/3))^(2m) −((2/9))^m +(1/3).(1/9^m )+(3/8).((2/9))^m −(3/4).((1/9))^m   easy from here   Σ_(n≥1) a^n =(a/(1−a)),∀∣a∣<1
2mx=tIm=12m02m[t]32mnm+1[2nmt]3nm18mIm=02m[t]n1[2nt]3ndt=2m1k=0kk+1k.n1[2nt]3ndt,2nt=y=kn2nk(k+1)2nk6n[y]dy=18mIm2nk(k+1)2n[y]dy=2n1j=02nk+j2nk+1+j[y]dy=2n1j=02nk+jdy=22nk+2n1(2n1)=18mIm=kn1k(22nk+2n1(2n1)6n=kn1k2(23)n+k2.(23)nk2(26)n=2m1k=0.(2k2+34k)=(2m1)(2m)(2m+11)3+342m1(2m1)Im=23m+13.22m+2m3.18m+3.22m13.2m4.18mI=m123.(23)2m(29)m+13.19m+38.(29)m34.(19)measyfromheren1an=a1a,a∣<1

Leave a Reply

Your email address will not be published. Required fields are marked *