Menu Close

Show-that-n-1-n-2-2n-1-3-2pi-3-27-




Question Number 197935 by Frix last updated on 04/Oct/23
Show that  Σ_(n=1) ^∞  (((n!)^2 )/((2n)!)) =(1/3)+((2π(√3))/(27))
Showthatn=1(n!)2(2n)!=13+2π327
Answered by witcher3 last updated on 05/Oct/23
Σ_(n≥1) ((Γ(n+1)Γ(n).n)/(Γ(2n+1)))  =Σ_(n≥1) nβ(n,n+1)=Σ_(n≥1) ∫_0 ^1 nt^n (1−t)^(n−1) dt  Σ_(n≥1) nx^(n−1) =(1/((1−x)^2 ))  =∫_0 ^1 (x/((1−x(1−x))^2 ))dx=∫_0 ^1 ((1−x)/((1−x(1−x))^2 ))dx=A  A=(1/2)∫_0 ^1 (dx/(((x−(1/2))^2 +(3/4))))  =(1/2)∫_(−(1/2)) ^(1/2) (dx/((x^2 +(3/4))^2 )),∫_(−(1/2)) ^(1/2) (dx/((x^2 +a)))=f(a)  f′(a)=∫((−dx)/((x^2 +a)^2 ))...  f(a)=(2/( (√a)))tan^(−1) ((1/( 2(√a))))  f′(a)=−(a)^(−(3/2)) tan^(−1) ((1/(2(√a))))+(2/( (√a))).(−(1/4)a^(−(3/2)) .((4a)/(4a+1)).)  A=−(1/2).f′((3/4))  =(1/2)((8/(3(√3))).(π/6))+(2/( (√3)))((1/4).(8/(3(√3))).(3/4))  =((2π)/(9(√3)))+(1/3)=((2π(√3))/(27))+(1/3)  ⇔Σ_(n≥1) (((n!)^2 )/(2n))=((2π(√3))/(27))+(1/3)
n1Γ(n+1)Γ(n).nΓ(2n+1)=n1nβ(n,n+1)=n101ntn(1t)n1dtn1nxn1=1(1x)2=01x(1x(1x))2dx=011x(1x(1x))2dx=AA=1201dx((x12)2+34)=121212dx(x2+34)2,1212dx(x2+a)=f(a)f(a)=dx(x2+a)2f(a)=2atan1(12a)f(a)=(a)32tan1(12a)+2a.(14a32.4a4a+1.)A=12.f(34)=12(833.π6)+23(14.833.34)=2π93+13=2π327+13n1(n!)22n=2π327+13
Commented by witcher3 last updated on 05/Oct/23
y′re Welcom
yreWelcom
Commented by Frix last updated on 05/Oct/23
Thank you!
Thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *