Show-that-n-1-n-2-2n-1-3-2pi-3-27- Tinku Tara October 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 197935 by Frix last updated on 04/Oct/23 Showthat∑∞n=1(n!)2(2n)!=13+2π327 Answered by witcher3 last updated on 05/Oct/23 ∑n⩾1Γ(n+1)Γ(n).nΓ(2n+1)=∑n⩾1nβ(n,n+1)=∑n⩾1∫01ntn(1−t)n−1dt∑n⩾1nxn−1=1(1−x)2=∫01x(1−x(1−x))2dx=∫011−x(1−x(1−x))2dx=AA=12∫01dx((x−12)2+34)=12∫−1212dx(x2+34)2,∫−1212dx(x2+a)=f(a)f′(a)=∫−dx(x2+a)2…f(a)=2atan−1(12a)f′(a)=−(a)−32tan−1(12a)+2a.(−14a−32.4a4a+1.)A=−12.f′(34)=12(833.π6)+23(14.833.34)=2π93+13=2π327+13⇔∑n⩾1(n!)22n=2π327+13 Commented by witcher3 last updated on 05/Oct/23 y′reWelcom Commented by Frix last updated on 05/Oct/23 Thankyou! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determiner-la-surface-hachuree-voir-figure-BC-10cm-B-45-C-30-Next Next post: Question-197917 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.