Question Number 197982 by hardmath last updated on 07/Oct/23
Answered by witcher3 last updated on 11/Oct/23
$$\mathrm{sin}\left(\frac{\mathrm{12}\pi}{\mathrm{180}}\right)\mathrm{sin}\left(\frac{\mathrm{15}\pi}{\mathrm{180}}\right)\mathrm{sin}\left(\frac{\mathrm{51}\pi}{\mathrm{180}}\right)\mathrm{sin}\left(\frac{\mathrm{57}\pi}{\mathrm{180}}\right)\mathrm{sin}\left(\frac{\mathrm{63}\pi}{\mathrm{180}}\right) \\ $$$$\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{60}}\right)\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{60}}\right)\mathrm{sin}\left(\frac{\mathrm{17}\pi}{\mathrm{60}}\right)\mathrm{sin}\left(\frac{\mathrm{19}\pi}{\mathrm{60}}\right)\mathrm{sin}\left(\frac{\mathrm{21}\pi}{\mathrm{60}}\right) \\ $$$$\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{60}}\right)=\mathrm{sin}\left(\frac{\pi}{\mathrm{30}}\right)=\mathrm{sin}\left(\frac{\pi}{\mathrm{5}}−\frac{\pi}{\mathrm{6}}\right) \\ $$$$\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{60}}\right)=\mathrm{sin}\left(\frac{\pi}{\mathrm{12}}\right)=\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}−\frac{\pi}{\mathrm{4}}\right) \\ $$$$\mathrm{sin}\left(\frac{\mathrm{17}\pi}{\mathrm{60}}\right)=\mathrm{sin}\left(\frac{\pi}{\mathrm{5}}+\frac{\pi}{\mathrm{12}}\right) \\ $$$$\mathrm{sin}\left(\frac{\mathrm{19}\pi}{\mathrm{60}}\right)\mathrm{sin}\left(\frac{\mathrm{21}\pi}{\mathrm{60}}\right).=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\left(\frac{\pi}{\mathrm{30}}\right)−\mathrm{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right) \\ $$$$\mathrm{sin}\left(\frac{\pi}{\mathrm{5}}\right)=\frac{\sqrt{\mathrm{5}−\sqrt{\mathrm{5}}}}{\mathrm{2}\sqrt{\mathrm{2}}},\mathrm{cos}\left(\frac{\pi}{\mathrm{5}}\right)=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{cos}\left(\frac{\pi}{\mathrm{30}}\right)=\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}−\frac{\pi}{\mathrm{30}}\right)}… \\ $$$$\mathrm{just}\:\mathrm{compute}\:\mathrm{all}\:\mathrm{value} \\ $$$$ \\ $$$$ \\ $$
Answered by Sutrisno last updated on 14/Oct/23
$$\frac{\mathrm{2}.{sin}\mathrm{12}.{cos}\mathrm{12}.{sin}\mathrm{15}.{sin}\mathrm{51}.\mathrm{2}.{sin}\mathrm{57}.{cos}\mathrm{57}{sin}\mathrm{63}}{\mathrm{2}{cos}\mathrm{12}.\mathrm{2}{cos}\mathrm{57}} \\ $$$$\frac{{sin}\mathrm{24}.{sin}\mathrm{15}.{sin}\mathrm{51}.{sin}\mathrm{114}.{sin}\mathrm{63}}{\mathrm{4}{sin}\mathrm{102}.{cos}\mathrm{57}} \\ $$$$\frac{{sin}\mathrm{24}.{sin}\mathrm{15}.{sin}\mathrm{51}.{cos}\mathrm{24}.{sin}\mathrm{63}}{\mathrm{4}.\mathrm{2}.{sin}\mathrm{51}.{cos}\mathrm{51}.{cos}\mathrm{57}} \\ $$$$\frac{\mathrm{2}.{sin}\mathrm{24}.{cos}\mathrm{24}.{sin}\mathrm{63}}{\mathrm{2}.\mathrm{4}.\mathrm{2}{cos}\mathrm{51}.{cos}\mathrm{57}} \\ $$$$\frac{{sin}\mathrm{48}.{sin}\mathrm{15}.{sin}\mathrm{63}}{\mathrm{16}{cos}\mathrm{51}.{cos}\mathrm{57}} \\ $$$$\frac{{sin}\mathrm{48}\left({cos}\mathrm{48}−{cos}\mathrm{78}\right)}{\mathrm{16}\left({cos}\mathrm{108}+{cos}\mathrm{6}\right)} \\ $$$$\frac{{sin}\mathrm{48}.{cos}\mathrm{48}−{cos}\mathrm{78}{sin}\mathrm{48}}{\mathrm{16}\left({cos}\mathrm{108}+{cos}\mathrm{6}\right)} \\ $$$$\frac{{sin}\mathrm{96}−\left({sin}\mathrm{126}−{sin}\mathrm{30}\right)}{\mathrm{32}\left({cos}\mathrm{108}+{cos}\mathrm{6}\right)} \\ $$$$\frac{{cos}\mathrm{6}−\left({cos}\mathrm{36}−\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{32}\left({cos}\mathrm{108}+{cos}\mathrm{6}\right)}\:\:\:\left({cos}\mathrm{36}−\frac{\mathrm{1}}{\mathrm{2}}={sin}\mathrm{18}={cos}\mathrm{72}\right) \\ $$$$\frac{{cos}\mathrm{6}−{cos}\mathrm{72}}{\mathrm{32}\left({cos}\mathrm{6}−{cos}\mathrm{72}\right)}\:\:\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{32}} \\ $$