Menu Close

Question-198014




Question Number 198014 by hardmath last updated on 07/Oct/23
Answered by mahdipoor last updated on 07/Oct/23
=Σ_(x=−1) ^(−∞) (Σ_(y=x−1) ^(−∞) 2^(x+1) ×3^y ×5)=5(Σ_(x=−1) ^(−∞) 2^(x+1) (Σ_(y=x−1) ^(−∞) 3^y ))=  5(Σ_(x=−1) ^(−∞) 2^(x+1) (3^(x−1) +3^(x−2) +...+3^(−∞) ))=  5(Σ_(x=−1) ^(−∞) 2^(x+1) ×(((3^(x−1) +...+3^(−∞) )(3−1))/((3−1))))=  5(Σ_(x=−1) ^(−∞) 2^(x+1) ×(3^x /2))=5(Σ_(x=−1) ^(−∞) 6^x )=5×(6^0 /(6−1))=1
$$=\underset{{x}=−\mathrm{1}} {\overset{−\infty} {\sum}}\left(\underset{{y}={x}−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{2}^{{x}+\mathrm{1}} ×\mathrm{3}^{{y}} ×\mathrm{5}\right)=\mathrm{5}\left(\underset{{x}=−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{2}^{{x}+\mathrm{1}} \left(\underset{{y}={x}−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{3}^{{y}} \right)\right)= \\ $$$$\mathrm{5}\left(\underset{{x}=−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{2}^{{x}+\mathrm{1}} \left(\mathrm{3}^{{x}−\mathrm{1}} +\mathrm{3}^{{x}−\mathrm{2}} +…+\mathrm{3}^{−\infty} \right)\right)= \\ $$$$\mathrm{5}\left(\underset{{x}=−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{2}^{{x}+\mathrm{1}} ×\frac{\left(\mathrm{3}^{{x}−\mathrm{1}} +…+\mathrm{3}^{−\infty} \right)\left(\mathrm{3}−\mathrm{1}\right)}{\left(\mathrm{3}−\mathrm{1}\right)}\right)= \\ $$$$\mathrm{5}\left(\underset{{x}=−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{2}^{{x}+\mathrm{1}} ×\frac{\mathrm{3}^{{x}} }{\mathrm{2}}\right)=\mathrm{5}\left(\underset{{x}=−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{6}^{{x}} \right)=\mathrm{5}×\frac{\mathrm{6}^{\mathrm{0}} }{\mathrm{6}−\mathrm{1}}=\mathrm{1} \\ $$
Answered by MathematicalUser2357 last updated on 09/Oct/23
Σ_ determinant (((y<x≤−1)),((x,y∈Z))) 2^(x+1) ∙3^y ∙5  =Σ_(x=−1) ^(−∞) (Σ_(y=x−1) ^(−∞) 2^(x+1) ∙3^y ∙5)
$$\underset{\begin{matrix}{{y}<{x}\leq−\mathrm{1}}\\{{x},{y}\in\mathbb{Z}}\end{matrix}} {\sum}\mathrm{2}^{{x}+\mathrm{1}} \centerdot\mathrm{3}^{{y}} \centerdot\mathrm{5} \\ $$$$=\underset{{x}=−\mathrm{1}} {\overset{−\infty} {\sum}}\left(\underset{{y}={x}−\mathrm{1}} {\overset{−\infty} {\sum}}\mathrm{2}^{{x}+\mathrm{1}} \centerdot\mathrm{3}^{{y}} \centerdot\mathrm{5}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *