Menu Close

Question-198030




Question Number 198030 by hardmath last updated on 08/Oct/23
Answered by Mathspace last updated on 09/Oct/23
let (√(arcsinx))=t ⇒x=sin(t^2 )  and I=∫_(√(arcsint)) ^(√(arcsin(t^2 )))    (t/(sin(t^2 )(sin(t^2 )−1)))2tcos(t^2 )dt  =−2∫_(√(arcsint)) ^(√(arcsin(t^2 )))   (t^2 /(sin(t^2 )cos(t^2 )))cos(t^2 )dt  =2∫_(√(arcsint)) ^(√(arcsint^2 ))    (t^2 /(sin(t^2 )))dt   (t=(√u))  =2∫_(√(arcsin(√u))) ^(√(arcsinu))    (u/(sinu))×(du/(2(√u)))  =∫_(√(arcsin(√u))) ^(√(arcsinu))    ((√u)/(sinu))du  ∃c ∈](√(arcsin(√u))),(√(arcsinu))[/  I=(1/(sinc))∫_(√(arcsin(√u))) ^(√(arcsinu))    (√u)du  =(1/(sinc))×[(2/3)u^(3/2) ]_(√(arcsin(√u))) ^(√(arcsinu))   =(2/(3sinc)){((√(arcsinu)))^(3/2) −((√(arcsin(√u))))^(3/2) }    ⇒lim_(t→1^− )   I(t)=(1/(sin((π/2))))((√((π/2))^(3/2) ))−(√(((π/2))^(3/2) ))}  =0    (t→1 ⇒u→1)
$${let}\:\sqrt{{arcsinx}}={t}\:\Rightarrow{x}={sin}\left({t}^{\mathrm{2}} \right) \\ $$$${and}\:{I}=\int_{\sqrt{{arcsint}}} ^{\sqrt{{arcsin}\left({t}^{\mathrm{2}} \right)}} \:\:\:\frac{{t}}{{sin}\left({t}^{\mathrm{2}} \right)\left({sin}\left({t}^{\mathrm{2}} \right)−\mathrm{1}\right)}\mathrm{2}{tcos}\left({t}^{\mathrm{2}} \right){dt} \\ $$$$=−\mathrm{2}\int_{\sqrt{{arcsint}}} ^{\sqrt{{arcsin}\left({t}^{\mathrm{2}} \right)}} \:\:\frac{{t}^{\mathrm{2}} }{{sin}\left({t}^{\mathrm{2}} \right){cos}\left({t}^{\mathrm{2}} \right)}{cos}\left({t}^{\mathrm{2}} \right){dt} \\ $$$$=\mathrm{2}\int_{\sqrt{{arcsint}}} ^{\sqrt{{arcsint}^{\mathrm{2}} }} \:\:\:\frac{{t}^{\mathrm{2}} }{{sin}\left({t}^{\mathrm{2}} \right)}{dt}\:\:\:\left({t}=\sqrt{{u}}\right) \\ $$$$=\mathrm{2}\int_{\sqrt{{arcsin}\sqrt{{u}}}} ^{\sqrt{{arcsinu}}} \:\:\:\frac{{u}}{{sinu}}×\frac{{du}}{\mathrm{2}\sqrt{{u}}} \\ $$$$=\int_{\sqrt{{arcsin}\sqrt{{u}}}} ^{\sqrt{{arcsinu}}} \:\:\:\frac{\sqrt{{u}}}{{sinu}}{du} \\ $$$$\left.\exists{c}\:\in\right]\sqrt{{arcsin}\sqrt{{u}}},\sqrt{{arcsinu}}\left[/\right. \\ $$$${I}=\frac{\mathrm{1}}{{sinc}}\int_{\sqrt{{arcsin}\sqrt{{u}}}} ^{\sqrt{{arcsinu}}} \:\:\:\sqrt{{u}}{du} \\ $$$$=\frac{\mathrm{1}}{{sinc}}×\left[\frac{\mathrm{2}}{\mathrm{3}}{u}^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\sqrt{{arcsin}\sqrt{{u}}}} ^{\sqrt{{arcsinu}}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}{sinc}}\left\{\left(\sqrt{{arcsinu}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left(\sqrt{{arcsin}\sqrt{{u}}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right\} \\ $$$$ \\ $$$$\Rightarrow{lim}_{{t}\rightarrow\mathrm{1}^{−} } \:\:{I}\left({t}\right)=\frac{\mathrm{1}}{{sin}\left(\frac{\pi}{\mathrm{2}}\right)}\left(\sqrt{\left.\frac{\pi}{\mathrm{2}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }−\sqrt{\left(\frac{\pi}{\mathrm{2}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\right\} \\ $$$$=\mathrm{0}\:\:\:\:\left({t}\rightarrow\mathrm{1}\:\Rightarrow{u}\rightarrow\mathrm{1}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *