Question Number 198031 by cortano12 last updated on 08/Oct/23
Answered by AST last updated on 08/Oct/23
$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{20}{ab}\Rightarrow\left({a}−{b}\right)^{\mathrm{2}} =\mathrm{18}{ab}…\left({i}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{19}{ab}\Rightarrow\left({a}+{b}\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)=\mathrm{19}{ab}…\left({ii}\right) \\ $$$$\left({i}\right)\:{and}\:\left({ii}\right)\Rightarrow\left({a}+{b}\right)\left[\left({a}−{b}\right)^{\mathrm{2}} +{ab}\right] \\ $$$$=\left({a}+{b}\right)\left({a}−{b}\right)^{\mathrm{2}} +{ab}\left({a}+{b}\right)=\mathrm{19}{ab}=\left({a}−{b}\right)^{\mathrm{2}} +{ab} \\ $$$$\Rightarrow\left({a}−{b}\right)^{\mathrm{2}} \left({a}+{b}−\mathrm{1}\right)+{ab}\left({a}+{b}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({a}+{b}−\mathrm{1}\right)\left[\left({a}−{b}\right)^{\mathrm{2}} +{ab}\right]=\mathrm{0} \\ $$$$\Rightarrow{a}+{b}=\mathrm{1}\:{or}\:\left({a}−{b}\right)^{\mathrm{2}} =−{ab}\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={ab} \\ $$$${Case}\:{I}:\:{a}+{b}=\mathrm{1}\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{22}{ab}=\mathrm{1}\Rightarrow{ab}=\frac{\mathrm{1}}{\mathrm{22}} \\ $$$$\Rightarrow\left({a}−{b}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}=\mathrm{1}−\frac{\mathrm{2}}{\mathrm{11}}=\frac{\mathrm{9}}{\mathrm{11}} \\ $$$$\Rightarrow\mid{a}−{b}\mid=\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{11}} \\ $$$${Case}\:{II}:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={ab}\Rightarrow{ab}=\mathrm{20}{ab} \\ $$$${Since}\:{a},{b}\neq\mathrm{0},{we}\:{get}\:\mathrm{1}=\mathrm{20}\left({absurd}\right) \\ $$$${So}\:{Case}\:{I}\:{gives}\:\mid{a}−{b}\mid=\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{11}} \\ $$
Answered by mr W last updated on 09/Oct/23
$${let}\:{u}={a}+{b},\:{v}={ab}\neq\mathrm{0} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{20}{ab} \\ $$$$\Rightarrow{u}^{\mathrm{2}} =\mathrm{22}{v}\:\:\:…\left({i}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{19}{ab} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right)=\mathrm{19}{ab}+\mathrm{3}{ab}\left({a}+{b}\right) \\ $$$$\Rightarrow{u}^{\mathrm{3}} =\mathrm{19}{v}+\mathrm{3}{uv}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)×{u}−\left({ii}\right): \\ $$$$\mathrm{19}\left({u}−\mathrm{1}\right){v}=\mathrm{0} \\ $$$$\Rightarrow{u}=\mathrm{1}\:\Rightarrow{v}=\frac{\mathrm{1}}{\mathrm{22}} \\ $$$$\left({a}−{b}\right)^{\mathrm{2}} =\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{4}{ab}=\mathrm{1}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{22}}=\frac{\mathrm{9}}{\mathrm{11}} \\ $$$$\Rightarrow\mid{a}−{b}\mid=\frac{\mathrm{3}}{\:\sqrt{\mathrm{11}}}\:\:\checkmark \\ $$
Answered by Frix last updated on 08/Oct/23
$$\left(\mathrm{1}\right)\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{20}{ab}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} −\mathrm{19}{ab}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{2}−\mathrm{1}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{ab}=\mathrm{0} \\ $$$$\left({a}+{b}−\mathrm{1}\right)\left({a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${b}=\mathrm{1}−{a}\:\:\:\:\:\left[{b}={a}\left(\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}\mathrm{i}}{\mathrm{2}}\right)\:\mathrm{doesn}'\mathrm{t}\:\mathrm{fit}\:\left(\mathrm{1}\right)\vee\left(\mathrm{2}\right)\right] \\ $$$$\Rightarrow\:\mid{a}−{b}\mid=\mid\mathrm{2}{a}−\mathrm{1}\mid \\ $$$$\mathrm{Inserting}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\Rightarrow \\ $$$${a}^{\mathrm{2}} −{a}+\frac{\mathrm{1}}{\mathrm{22}}=\mathrm{0} \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{11}}}{\mathrm{22}} \\ $$$$\mid{a}−{b}\mid=\mid\mathrm{2}{a}−\mathrm{1}\mid=\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{11}} \\ $$