Menu Close

Question-198052




Question Number 198052 by Mastermind last updated on 09/Oct/23
Answered by Sutrisno last updated on 09/Oct/23
x=asinθ ⇒ dx=acosθdθ  ∫_0 ^(π/6) a^2 sin^2 θ(a^2 −a^2 sin^2 θ)^(−(3/2)) acosθdθ  ∫_0 ^(π/6) a^2 sin^2 x(a^2 cos^2 θ)^(−(3/2)) acosθdθ  ∫_0 ^(π/6) a^2 sin^2 xa^(−3) cos^(−3) θacosθdθ  ∫_0 ^(π/6) tan^2 θdθ  ∫_0 ^(π/6) sec^2 θ−1dθ  tanθ−θ∣_0 ^(π/6)   ((√3)/3)−(π/6)
$${x}={asin}\theta\:\Rightarrow\:{dx}={acos}\theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} {a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta\left({a}^{\mathrm{2}} −{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} {acos}\theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} {a}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}\left({a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} {acos}\theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} {a}^{\mathrm{2}} {sin}^{\mathrm{2}} {xa}^{−\mathrm{3}} {cos}^{−\mathrm{3}} \theta{acos}\theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} {tan}^{\mathrm{2}} \theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} {sec}^{\mathrm{2}} \theta−\mathrm{1}{d}\theta \\ $$$${tan}\theta−\theta\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}−\frac{\pi}{\mathrm{6}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *