Menu Close

Determiner-lim-x-3-x-3-3-x-5-2-




Question Number 198123 by a.lgnaoui last updated on 10/Oct/23
Determiner  lim_(x→3)  ((x−3)/(^3 (√(x+5)) −2))
Determinerlimx3x33x+52
Answered by Mathspace last updated on 10/Oct/23
a^3 −b^3 =(a−b)(a^2 +ab+b^2 ) ⇒  a−b=(^3 (√a)−^3 (√b))((^3 (√a))^2 +^3 (√(ab))+(^3 (√b))^2 ) ⇒  (^3 (√(x+5)))−(^3 (√8))  =((x+5−8)/((x+5)^(2/3) +(8(x+5))^(1/3) +8^(2/3) ))  ⇒lim_(x→3) f(x)  =lim_(x→3) ((x−3)/((x−3)/((x+5)^(2/3) +2(x+5)^(1/3) +4)))  =lim_(x→3)  (x+5)^(2/3) +2(x+5)^(1/3) +4  =8^(2/3) +2×8^(1/3) +4  =4+4+4=12
a3b3=(ab)(a2+ab+b2)ab=(3a3b)((3a)2+3ab+(3b)2)(3x+5)(38)=x+58(x+5)23+(8(x+5))13+823limx3f(x)=limx3x3x3(x+5)23+2(x+5)13+4=limx3(x+5)23+2(x+5)13+4=823+2×813+4=4+4+4=12
Commented by a.lgnaoui last updated on 10/Oct/23
exact
exact
Answered by MM42 last updated on 10/Oct/23
((x+5))^(1/3) −2=u⇒x+5=(u+2)^3 ⇒x=(u+2)^3 −5  ⇒lim_(u→0)  (((u+2)^3 −8)/u)=lim_(u→0)  ((u(u^2 +6u+12))/u)=12 ✓
x+532=ux+5=(u+2)3x=(u+2)35limu0(u+2)38u=limu0u(u2+6u+12)u=12
Answered by cortano12 last updated on 11/Oct/23
    Y3
Y3

Leave a Reply

Your email address will not be published. Required fields are marked *