Menu Close

a-n-2-a-n-a-n-1-n-1-n-N-and-here-a-1-and-a-2-then-prove-that-lim-n-a-n-2-2-1-3-




Question Number 198152 by universe last updated on 11/Oct/23
    a_(n+2)  =   (√(a_n ×a_(n+1) ))   ∀ n≥1 , n ∈ N   and here  a_(1 ) = α  and a_2 = β  then     prove that  lim_(n→∞)  a_(n+2)    =  (α×β^2 )^(1/3)
an+2=an×an+1n1,nNandherea1=αanda2=βthenprovethatlimnan+2=(α×β2)1/3
Answered by mr W last updated on 12/Oct/23
let b_n =ln a_n   a_(n+2) =(√(a_(n+1) ×a_n ))  ln a_(n+2) =((ln a_(n+1) +ln a_n )/2)  2 ln a_(n+2) −ln a_(n+1) −ln a_n =0  ⇒2b_(n+2) −b_(n+1) −b_n =0   (recurrence relation)  2p^2 −p−1=0    (characteristic equation)  (2p+1)(p−1)=0  ⇒p=1, −(1/2)  ⇒b_n =A+B(−(1/2))^n   b_1 =A+B(−(1/2))=ln a_1 =ln α   ...(i)  b_2 =A+B(−(1/2))^2 =ln a_2 =ln β   ...(ii)  (ii)−(i):  ((3B)/4)=ln β−ln α  ⇒B=(4/3)(ln (β/α))=ln ((β/α))^(4/3)   ⇒A=(B/2)+ln α=(2/3)(ln (β/α))+ln α=ln (αβ^2 )^(1/3)   ⇒b_n =ln (αβ^2 )^(1/3) +(−(1/2))^n ln ((β/α))^(4/3)   ⇒b_n =ln [(αβ^2 )^(1/3) ((β/α))^((4/3)(−(1/2))^n ) ]=ln a_n   ⇒a_n = (αβ^2 )^(1/3) ((β/α))^((4/3)(−(1/2))^n )   ⇒lim_(n→∞) a_n =(αβ^2 )^(1/3)  ✓
letbn=lnanan+2=an+1×anlnan+2=lnan+1+lnan22lnan+2lnan+1lnan=02bn+2bn+1bn=0(recurrencerelation)2p2p1=0(characteristicequation)(2p+1)(p1)=0p=1,12bn=A+B(12)nb1=A+B(12)=lna1=lnα(i)b2=A+B(12)2=lna2=lnβ(ii)(ii)(i):3B4=lnβlnαB=43(lnβα)=ln(βα)43A=B2+lnα=23(lnβα)+lnα=ln(αβ2)13bn=ln(αβ2)13+(12)nln(βα)43bn=ln[(αβ2)13(βα)43(12)n]=lnanan=(αβ2)13(βα)43(12)nlimnan=(αβ2)13
Commented by universe last updated on 12/Oct/23
  thanks sir
thankssir
Answered by Frix last updated on 12/Oct/23
a_(n+2) =(√(a_(n+1) a_n ))  a_n =e^(C_1 (−(1/2))^n +C_2 )   a_1 =α ⇔ e^(−(C_1 /2)+C_2 ) =α ⇔ −(C_1 /2)+C_2 =ln α  a_2 =β ⇔ e^((C_1 /4)+C_2 ) =β ⇔ (C_1 /4)+C_2 =ln β  ⇒  C_1 =(4/3)ln (β/α) ∧C_2 =(1/3)ln αβ^2   ⇒  a_n =α^((1/3)(1−(−2)^(2−n) )) β^((2/3)(1+(−2)^(1−n) ))   lim_(n→∞)  a_n  =α^((1/3)(1±0)) β^((2/3)(1∓0)) =(αβ^2 )^(1/3)
an+2=an+1anan=eC1(12)n+C2a1=αeC12+C2=αC12+C2=lnαa2=βeC14+C2=βC14+C2=lnβC1=43lnβαC2=13lnαβ2an=α13(1(2)2n)β23(1+(2)1n)limnan=α13(1±0)β23(10)=(αβ2)13

Leave a Reply

Your email address will not be published. Required fields are marked *