a-n-2-a-n-a-n-1-n-1-n-N-and-here-a-1-and-a-2-then-prove-that-lim-n-a-n-2-2-1-3- Tinku Tara October 11, 2023 Limits 0 Comments FacebookTweetPin Question Number 198152 by universe last updated on 11/Oct/23 an+2=an×an+1∀n⩾1,n∈Nandherea1=αanda2=βthenprovethatlimn→∞an+2=(α×β2)1/3 Answered by mr W last updated on 12/Oct/23 letbn=lnanan+2=an+1×anlnan+2=lnan+1+lnan22lnan+2−lnan+1−lnan=0⇒2bn+2−bn+1−bn=0(recurrencerelation)2p2−p−1=0(characteristicequation)(2p+1)(p−1)=0⇒p=1,−12⇒bn=A+B(−12)nb1=A+B(−12)=lna1=lnα…(i)b2=A+B(−12)2=lna2=lnβ…(ii)(ii)−(i):3B4=lnβ−lnα⇒B=43(lnβα)=ln(βα)43⇒A=B2+lnα=23(lnβα)+lnα=ln(αβ2)13⇒bn=ln(αβ2)13+(−12)nln(βα)43⇒bn=ln[(αβ2)13(βα)43(−12)n]=lnan⇒an=(αβ2)13(βα)43(−12)n⇒limn→∞an=(αβ2)13✓ Commented by universe last updated on 12/Oct/23 thankssir Answered by Frix last updated on 12/Oct/23 an+2=an+1anan=eC1(−12)n+C2a1=α⇔e−C12+C2=α⇔−C12+C2=lnαa2=β⇔eC14+C2=β⇔C14+C2=lnβ⇒C1=43lnβα∧C2=13lnαβ2⇒an=α13(1−(−2)2−n)β23(1+(−2)1−n)limn→∞an=α13(1±0)β23(1∓0)=(αβ2)13 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-198151Next Next post: Resoudre-log-x-3-log-x-2-log-x-2-4x-21- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.