Prove-that-2t-1-lnt-ln-1-t-1-0-t-x-1-t-1-x-dx-and-1-0-2t-1-lnt-ln-1-t-dt-pi-2-1-0-x-1-x-sin-pix-dx- Tinku Tara October 12, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 198156 by Erico last updated on 12/Oct/23 Provethat2t−1lnt−ln(1−t)=∫01tx(1−t)1−xdxand∫012t−1lnt−ln(1−t)dt=π2∫01x(1−x)sin(πx)dx Answered by witcher3 last updated on 12/Oct/23 ∫01e(1−x)ln(1−t)+xln(t)dx=∫01(1−t)ex(ln(t1−t)dx=(1−t)(t1−t−1)ln(t)−ln(1−t)=2t−1ln(t)−ln(1−t)∫012t−1ln(t)−ln(1−t)dt=∫01∫01tx(1−t)1−xdxdt=∫01∫01tx(1−t)1−xdxdt=∫01∫01tx(1−t)1−xdtdx=∫01β(x+1,2−x)dx=∫01x(1−x)Γ(3).Γ(x)Γ(1−x)dx=12∫01x(1−x)πsin(πx)=π2∫01x(1−x)sin(πx)dx=π2.7ζ(3)π3=7ζ(3)2π2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-198158Next Next post: f-xf-y-x-xy-f-x-f-R-R-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.