Menu Close

f-xf-y-x-xy-f-x-f-R-R-f-x-




Question Number 198178 by universe last updated on 13/Oct/23
f(xf(y)+x)=xy+f(x)  f:R→R  f(x)=?
f(xf(y)+x)=xy+f(x)f:RRf(x)=?
Answered by Rasheed.Sindhi last updated on 13/Oct/23
Let f(x)=ax+b  f(xf(y)+x)=xy+f(x)  ⇒a(xf(y)+x)+b=xy+ax+b  ⇒ax(ay+b)+ax=xy+ax  ⇒ax(ay+b)=xy  y→x  ⇒ax(ax+b)=x^2         a^2 x^2 +bx=x^2       a^2 =1∧ b=0       a=±1 ∧ b=0  f(x)=ax+b=(±1)x+0   determinant (( determinant (((f(x)=x   ∣   f(x)=−x)))))  Verification:  (1) f(x)=x  f(xf(y)+x)=xy+f(x)  xf(y)+x=xy+f(x)  ⇒xy+x=xy+x (✓)  (2) f(x)=−x  f(xf(y)+x)=xy+f(x)  ⇒−xf(y)−x=xy−x  ⇒−xf(y)−x=xy−x  ⇒−x(−y)−x=xy−x  ⇒xy−x=xy−x (✓)
Letf(x)=ax+bf(xf(y)+x)=xy+f(x)a(xf(y)+x)+b=xy+ax+bax(ay+b)+ax=xy+axax(ay+b)=xyyxax(ax+b)=x2a2x2+bx=x2a2=1b=0a=±1b=0f(x)=ax+b=(±1)x+0f(x)=xf(x)=xVerification:(1)f(x)=xf(xf(y)+x)=xy+f(x)xf(y)+x=xy+f(x)xy+x=xy+x()(2)f(x)=xf(xf(y)+x)=xy+f(x)xf(y)x=xyxxf(y)x=xyxx(y)x=xyxxyx=xyx()
Commented by mr W last updated on 13/Oct/23
fine!  but how is your argument that f(x) is  a linear function?
fine!buthowisyourargumentthatf(x)isalinearfunction?
Commented by Rasheed.Sindhi last updated on 13/Oct/23
sir, I′ve no argument! Even about     the function to be polynomial! But there′s   possibility of being linear.
sir,Ivenoargument!Evenaboutthefunctiontobepolynomial!Buttherespossibilityofbeinglinear.
Answered by witcher3 last updated on 13/Oct/23
let b∈R ∃ t∈R∣f(t)=b.....?  (x,y)=(1,y)⇒f(f(y)+1)=y+f(1)  y=b−f(1)  ⇒f(f(b−f(1)+1)=b,t=f(b−f(1))+1  f surjective  if f(a)=f(b)⇒(a=b)...?  (x,y)=(1,y)  f(f(y)+1)=y+f(1)..y=a y=b⇒a=b  ⇒ f is injective    so f bijective  f(f(y)+1)=y+f(1) for y=0⇒f(f(0)+1)=f(1)  withe injectivity⇒f(0)+1=1⇒f(0)=0  ∀t∈R−{0}⇔f(t)≠0 by bijection“  (x,y)=(x,y^∗ ),suche  f(y^∗ )=−1.y^∗  existe f surjective  ⇔f(x.−1+x)=xy^∗ +f(x)=f(0)=0  f(x)=−xy^∗   f is linear    f(x)=ax solution⇒(x,y)=(x,x)  f(ax^2 +x)=a^2 x^2 +ax=x^2 +ax⇒a^2 =1  a∈{−1,1}  ∀(x,y)∈R^2 ∣f(xf(y)+x)=xy+f(x)⇒f∈{f(x)=x,f(x)=−x}
letbRtRf(t)=b..?(x,y)=(1,y)f(f(y)+1)=y+f(1)y=bf(1)f(f(bf(1)+1)=b,t=f(bf(1))+1fsurjectiveiff(a)=f(b)(a=b)?(x,y)=(1,y)f(f(y)+1)=y+f(1)..y=ay=ba=bfisinjectivesofbijectivef(f(y)+1)=y+f(1)fory=0f(f(0)+1)=f(1)witheinjectivityf(0)+1=1f(0)=0tR{0}f(t)0bybijection(x,y)=(x,y),suchef(y)=1.yexistefsurjectivef(x.1+x)=xy+f(x)=f(0)=0f(x)=xyfislinearf(x)=axsolution(x,y)=(x,x)f(ax2+x)=a2x2+ax=x2+axa2=1a{1,1}(x,y)R2f(xf(y)+x)=xy+f(x)f{f(x)=x,f(x)=x}

Leave a Reply

Your email address will not be published. Required fields are marked *