Menu Close

yellow-Area-Squart-Area-




Question Number 198207 by a.lgnaoui last updated on 13/Oct/23
((yellow Area)/(Squart Area))=?
$$\frac{\mathrm{yellow}\:\mathrm{Area}}{\mathrm{Squart}\:\mathrm{Area}}=? \\ $$
Commented by a.lgnaoui last updated on 13/Oct/23
Answered by mr W last updated on 14/Oct/23
Commented by mr W last updated on 14/Oct/23
R=(3+4)/(√2)=7/(√2)  tan α=((3/(√2))/(7/(√2)−3/(√2)))=(3/4)  tan β=((4/(√2))/(7/(√2)−4/(√2)))=(4/3)  a=2R sin (α/2)=R(√(2(1−cos α)))=R(√(2(1−(4/5))))=R(√(2/5))  b=2R sin (β/2)=R(√(2(1−cos β)))=R(√(2(1−(3/5))))=R(√(4/5))  A_(yellow) =((ab sin 135°)/2)=(R^2 /(2(√2)))(√((2/5)×(4/5)))=(R^2 /5)   A_(square) =R^2   (A_(yellow) /A_(square) )=(1/5) ✓
$${R}=\left(\mathrm{3}+\mathrm{4}\right)/\sqrt{\mathrm{2}}=\mathrm{7}/\sqrt{\mathrm{2}} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{3}/\sqrt{\mathrm{2}}}{\mathrm{7}/\sqrt{\mathrm{2}}−\mathrm{3}/\sqrt{\mathrm{2}}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{4}/\sqrt{\mathrm{2}}}{\mathrm{7}/\sqrt{\mathrm{2}}−\mathrm{4}/\sqrt{\mathrm{2}}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${a}=\mathrm{2}{R}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}={R}\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)}={R}\sqrt{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{4}}{\mathrm{5}}\right)}={R}\sqrt{\frac{\mathrm{2}}{\mathrm{5}}} \\ $$$${b}=\mathrm{2}{R}\:\mathrm{sin}\:\frac{\beta}{\mathrm{2}}={R}\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\beta\right)}={R}\sqrt{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{5}}\right)}={R}\sqrt{\frac{\mathrm{4}}{\mathrm{5}}} \\ $$$${A}_{{yellow}} =\frac{{ab}\:\mathrm{sin}\:\mathrm{135}°}{\mathrm{2}}=\frac{{R}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}}\sqrt{\frac{\mathrm{2}}{\mathrm{5}}×\frac{\mathrm{4}}{\mathrm{5}}}=\frac{{R}^{\mathrm{2}} }{\mathrm{5}} \\ $$$$\:{A}_{{square}} ={R}^{\mathrm{2}} \\ $$$$\frac{{A}_{{yellow}} }{{A}_{{square}} }=\frac{\mathrm{1}}{\mathrm{5}}\:\checkmark \\ $$
Commented by a.lgnaoui last updated on 14/Oct/23
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *