Menu Close

4x-2-2x-1-x-2-x-gt-1-




Question Number 198228 by sulaymonnorboyev140 last updated on 14/Oct/23
(4x^2 +2x+1)^(x^2 −x) >1
$$\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)^{{x}^{\mathrm{2}} −{x}} >\mathrm{1} \\ $$
Answered by MM42 last updated on 14/Oct/23
 { ((4x^2 +2x+1>1)),((x^2 −x>0)) :}⇒(−∞,−(1/2))∪(0,+∞)=A  & (−∞,0)∪(1,+∞)=B  ⇒A∩B=(−∞,−(1/2))∪(1,+∞) (i)   { ((0<4x^2 +2x+1<1)),((x^2 −x<0)) :}⇒(−(1/2),0)=C  & (0,1)=D  ⇒C∩D=φ (ii)  (i)∪(ii)=(i)
$$\begin{cases}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}>\mathrm{1}}\\{{x}^{\mathrm{2}} −{x}>\mathrm{0}}\end{cases}\Rightarrow\left(−\infty,−\frac{\mathrm{1}}{\mathrm{2}}\right)\cup\left(\mathrm{0},+\infty\right)={A}\:\:\&\:\left(−\infty,\mathrm{0}\right)\cup\left(\mathrm{1},+\infty\right)={B} \\ $$$$\Rightarrow{A}\cap{B}=\left(−\infty,−\frac{\mathrm{1}}{\mathrm{2}}\right)\cup\left(\mathrm{1},+\infty\right)\:\left({i}\right) \\ $$$$\begin{cases}{\mathrm{0}<\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}<\mathrm{1}}\\{{x}^{\mathrm{2}} −{x}<\mathrm{0}}\end{cases}\Rightarrow\left(−\frac{\mathrm{1}}{\mathrm{2}},\mathrm{0}\right)={C}\:\:\&\:\left(\mathrm{0},\mathrm{1}\right)={D} \\ $$$$\Rightarrow{C}\cap{D}=\phi\:\left({ii}\right) \\ $$$$\left({i}\right)\cup\left({ii}\right)=\left({i}\right) \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *