Menu Close

find-the-sum-of-the-first-n-terms-from-1-2-3-4-5-6-7-8-9-10-




Question Number 198243 by mr W last updated on 15/Oct/23
find the sum of the first n terms from  1, 2+3, 4+5+6, 7+8+9+10, ...
findthesumofthefirstntermsfrom1,2+3,4+5+6,7+8+9+10,
Answered by som(math1967) last updated on 15/Oct/23
1+2+3+4+5+6+7+8+9+10+..n  no of term =((n(n+1))/2)  sum of ((n(n+1))/2) terms   =((((n(n+1))/2)×{((n(n+1))/2) +1})/2)  =((n(n+1)(n^2 +n+2))/8)
1+2+3+4+5+6+7+8+9+10+..nnoofterm=n(n+1)2sumofn(n+1)2terms=n(n+1)2×{n(n+1)2+1}2=n(n+1)(n2+n+2)8
Answered by universe last updated on 15/Oct/23
1, 2+3, 4+5+6, 7+8+9+10, ...   =   {a_n }      ((n^3 +n)/2) →this is a sum of n^(th)  term of     sequence {a_n }      now        P (let) = Σ_(n=1) ^n ((n^3 /2)+(n/2))        P     =     (1/2)×[((n(n+1))/2)]^2  +(1/2)×((n(n+1))/2)     P  =   ((n(n+1)(n^2 +n+2))/8)
1,2+3,4+5+6,7+8+9+10,={an}n3+n2thisisasumofnthtermofsequence{an}nowP(let)=nn=1(n32+n2)P=12×[n(n+1)2]2+12×n(n+1)2P=n(n+1)(n2+n+2)8
Answered by mr W last updated on 15/Oct/23
the n^(th)  term has k_n =n numbers  Σ_(i=1) ^(n−1) k_i =((n(n−1))/2)  a_n =[((n(n−1))/2)+1]+[((n(n−1))/2)+2]+...+[((n(n−1))/2)+n]  a_n =n×((n(n−1))/2)+1+2+...+n  a_n =n×((n(n−1))/2)+((n(n+1))/2)=((n(n^2 +1))/2)  s_n =Σ_(k=1) ^n a_k =Σ_(k=1) ^n ((k(k^2 +1))/2)=(1/2)Σ_(k=1) ^n (k+k^3 )     =(1/2)[((n(n+1))/2)+((n^2 (n+1)^2 )/4)]     =((n(n+1)(n^2 +n+2))/8) ✓
thenthtermhaskn=nnumbersn1i=1ki=n(n1)2an=[n(n1)2+1]+[n(n1)2+2]++[n(n1)2+n]an=n×n(n1)2+1+2++nan=n×n(n1)2+n(n+1)2=n(n2+1)2sn=nk=1ak=nk=1k(k2+1)2=12nk=1(k+k3)=12[n(n+1)2+n2(n+1)24]=n(n+1)(n2+n+2)8

Leave a Reply

Your email address will not be published. Required fields are marked *