Question Number 198237 by liuxinnan last updated on 15/Oct/23
$${if}\:\:−\sqrt{\mathrm{3}}\leqslant{sin}\left({x}+\varphi\right)+{cosx}\leqslant\sqrt{\mathrm{3}} \\ $$$$\varphi=? \\ $$
Answered by mr W last updated on 15/Oct/23
$$\mathrm{sin}\:\left({x}+\varphi\right)+\mathrm{cos}\:{x} \\ $$$$=\mathrm{cos}\:\varphi\:\mathrm{sin}\:{x}+\left(\mathrm{sin}\:\varphi+\mathrm{1}\right)\:\mathrm{cos}\:{x} \\ $$$$=\sqrt{\mathrm{cos}^{\mathrm{2}} \:\varphi+\left(\mathrm{sin}\:\varphi+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{sin}\:\left({x}+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{sin}\:\varphi+\mathrm{1}}{\mathrm{cos}\:\varphi}\right) \\ $$$$\in\:\left[−\sqrt{\mathrm{cos}^{\mathrm{2}} \:\varphi+\left(\mathrm{sin}\:\varphi+\mathrm{1}\right)^{\mathrm{2}} },\:\sqrt{\mathrm{cos}^{\mathrm{2}} \:\varphi+\left(\mathrm{sin}\:\varphi+\mathrm{1}\right)^{\mathrm{2}} }\right] \\ $$$$\sqrt{\mathrm{cos}^{\mathrm{2}} \:\varphi+\left(\mathrm{sin}\:\varphi+\mathrm{1}\right)^{\mathrm{2}} }=\sqrt{\mathrm{3}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\varphi+\left(\mathrm{sin}\:\varphi+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{3} \\ $$$$\mathrm{1}+\mathrm{2sin}\:\varphi+\mathrm{1}=\mathrm{3} \\ $$$$\mathrm{sin}\:\varphi=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\varphi={k}\pi+\left(−\mathrm{1}\right)^{{k}} \frac{\pi}{\mathrm{6}}\:{with}\:{k}\in\mathbb{Z} \\ $$
Commented by Frix last updated on 15/Oct/23
$$\mathrm{Use}\:\mathrm{a}\:\mathrm{3D}−\mathrm{plot}\:\mathrm{to}\:\mathrm{see}\:\mathrm{there}\:\mathrm{are}\:\mathrm{regions} \\ $$$$\mathrm{where}\:{f}\left({x},\:\varphi\right)=\mid\mathrm{sin}\:\left({x}+\varphi\right)\:+\mathrm{cos}\:{x}\mid>\sqrt{\mathrm{3}}. \\ $$$$\mathrm{They}\:\mathrm{almost}\:\mathrm{look}\:\mathrm{like}\:\mathrm{ellipses}\:\mathrm{with}\:\mathrm{half}\:\mathrm{axes} \\ $$$${a}\approx\mathrm{1}.\mathrm{20120}\wedge{b}\approx.\mathrm{458702} \\ $$$$\mathrm{i}.\mathrm{e}.\:{f}\left(\mathrm{2}.\mathrm{6},\:\mathrm{2}.\mathrm{3}\right)\approx\mathrm{1}.\mathrm{84} \\ $$$$\mathrm{One}\:\mathrm{of}\:\mathrm{these}\:“\mathrm{ellipses}'': \\ $$$$\left({y}+{x}−\pi−\mathrm{sin}^{−\mathrm{1}} \:\left(\sqrt{\mathrm{3}}+\mathrm{cos}\:{x}\right)\right)\left({y}+{x}−\mathrm{2}\pi+\mathrm{sin}^{−\mathrm{1}} \:\left(\sqrt{\mathrm{3}}+\mathrm{cos}\:{x}\right)\right)=\mathrm{0} \\ $$$$\mathrm{Inside}\:\mathrm{the}\:\mathrm{line}\:{f}\left({x}\right)>\sqrt{\mathrm{3}} \\ $$