Menu Close

Given-the-number-of-consisting-of-4-digits-abcd-such-that-a-b-c-d-is-A-495-B-385-C-275-D-165-E-55-




Question Number 198283 by cortano12 last updated on 16/Oct/23
Given the number of  consisting   of 4 digits abcd such that    a≤b≤c≤d is ...   (A) 495   (B) 385     (C) 275   (D) 165    (E) 55
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\:\mathrm{consisting} \\ $$$$\:\mathrm{of}\:\mathrm{4}\:\mathrm{digits}\:\mathrm{abcd}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\mathrm{a}\leqslant\mathrm{b}\leqslant\mathrm{c}\leqslant\mathrm{d}\:\mathrm{is}\:… \\ $$$$\:\left(\mathrm{A}\right)\:\mathrm{495}\:\:\:\left(\mathrm{B}\right)\:\mathrm{385}\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{275} \\ $$$$\:\left(\mathrm{D}\right)\:\mathrm{165}\:\:\:\:\left(\mathrm{E}\right)\:\mathrm{55}\: \\ $$
Commented by mr W last updated on 19/Oct/23
(A) 495  generally with k digits: (((k+8)!)/(8!k!))  see Q117061
$$\left({A}\right)\:\mathrm{495} \\ $$$${generally}\:{with}\:{k}\:{digits}:\:\frac{\left({k}+\mathrm{8}\right)!}{\mathrm{8}!{k}!} \\ $$$${see}\:{Q}\mathrm{117061} \\ $$
Answered by MM42 last updated on 16/Oct/23
{a,b,c,d} →  ((9),(4) )=126  {a,a,b,c} →  ((9),(3) )×3=252  {a,a,b,b} →  ((9),(2) )=36  {a,a,a,b} →  ((9),(2) )×2=72  {a,a,a,a} →9     ans=495 ✓ → A
$$\left\{{a},{b},{c},{d}\right\}\:\rightarrow\:\begin{pmatrix}{\mathrm{9}}\\{\mathrm{4}}\end{pmatrix}=\mathrm{126} \\ $$$$\left\{{a},{a},{b},{c}\right\}\:\rightarrow\:\begin{pmatrix}{\mathrm{9}}\\{\mathrm{3}}\end{pmatrix}×\mathrm{3}=\mathrm{252} \\ $$$$\left\{{a},{a},{b},{b}\right\}\:\rightarrow\:\begin{pmatrix}{\mathrm{9}}\\{\mathrm{2}}\end{pmatrix}=\mathrm{36} \\ $$$$\left\{{a},{a},{a},{b}\right\}\:\rightarrow\:\begin{pmatrix}{\mathrm{9}}\\{\mathrm{2}}\end{pmatrix}×\mathrm{2}=\mathrm{72} \\ $$$$\left\{{a},{a},{a},{a}\right\}\:\rightarrow\mathrm{9}\: \\ $$$$ \\ $$$${ans}=\mathrm{495}\:\checkmark\:\rightarrow\:{A} \\ $$$$ \\ $$
Commented by cortano12 last updated on 17/Oct/23
why (a,a,a,b)= ((9),(2) ) ×2 ?
$$\mathrm{why}\:\left(\mathrm{a},\mathrm{a},\mathrm{a},\mathrm{b}\right)=\begin{pmatrix}{\mathrm{9}}\\{\mathrm{2}}\end{pmatrix}\:×\mathrm{2}\:? \\ $$$$ \\ $$
Commented by mr W last updated on 17/Oct/23
(a,b,b,b) and (a,a,a,b)
$$\left({a},{b},{b},{b}\right)\:{and}\:\left({a},{a},{a},{b}\right) \\ $$
Commented by MM42 last updated on 17/Oct/23
 ⋛
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *