Menu Close

if-f-x-is-also-differentiable-on-R-such-that-f-x-gt-f-x-x-R-and-f-x-0-0-then-prove-that-f-x-0-x-gt-x-0-




Question Number 198279 by universe last updated on 16/Oct/23
  if f(x) is also differentiable on R such that    f′(x) > f(x) ∀ x ∈ R and f(x_0 ) = 0 then     prove that  f(x) ≥ 0 ∀ x > x_0
iff(x)isalsodifferentiableonRsuchthatf(x)>f(x)xRandf(x0)=0thenprovethatf(x)0x>x0
Answered by witcher3 last updated on 16/Oct/23
f′(x)−f(x)>0....(1)  (1)∗e^(−x) ⇔  f(x)′e^(−x) −f(x)e^(−x) >0  (f(x)e^(−x) )′>0  ⇒∫_x_0  ^x (f(x)e^(−x) )′dx>∫_x_0  ^x 0dx  f(x)e^(−x) −f(x_0 )e_(=0) ^(−x_0 ) ≥0  f(x)e^(−x) ≥0  ∀x>0,⇒f(x)≥0,x→e^(−x) >0,∀x∈[x_0 ,∞[
f(x)f(x)>0.(1)(1)exf(x)exf(x)ex>0(f(x)ex)>0x0x(f(x)ex)dx>x0x0dxf(x)exf(x0)e=0x00f(x)ex0x>0,f(x)0,xex>0,x[x0,[

Leave a Reply

Your email address will not be published. Required fields are marked *