Question Number 198282 by MathedUp last updated on 16/Oct/23
Answered by witcher3 last updated on 25/Oct/23
$$\begin{cases}{\mathrm{2cos}\left(\mathrm{t}\right)}\\{\mathrm{2sin}\left(\mathrm{t}\right)}\end{cases},\mathrm{t}\in\left[\mathrm{0},\mathrm{2}\pi\right]\:\mathrm{circle}\:\mathrm{radius}=\mathrm{2}\:\mathrm{origine}\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\int_{\mathrm{C}} \left(−\frac{\mathrm{xy}}{\mathrm{5}}\mathrm{dx}+\mathrm{2ydy}\right)=\int\int_{\mathrm{D}} \left(\partial\frac{\mathrm{2y}}{\partial\mathrm{x}}−\frac{\partial}{\partial\mathrm{y}}\left(−\frac{\mathrm{xy}}{\mathrm{5}}\right)\right)\mathrm{dA} \\ $$$$=\int\int_{\mathrm{D}} \left(\frac{\mathrm{x}}{\mathrm{5}}\right)\mathrm{dA} \\ $$$$\mathrm{D}\:\mathrm{disc}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{2}\:,\mathrm{center}\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\mathrm{x}=\mathrm{rcos}\left(\mathrm{a}\right),\mathrm{dA}=\mathrm{rdrda} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{rcos}\left(\mathrm{a}\right)\right)\mathrm{rdrda} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{5}}.\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}\left(\mathrm{a}\right)\mathrm{da}=\mathrm{0} \\ $$$$ \\ $$