Menu Close

for-a-n-be-a-sequence-of-positive-real-numbers-such-that-a-1-1-a-n-1-2-2a-n-a-n-1-a-n-0-n-1-than-the-sum-of-series-n-1-a-n-3-n-lies-in-the-interval-A-




Question Number 198304 by universe last updated on 17/Oct/23
   for {a_n } be a sequence of positive real numbers     such that  a_1 =1 , a_(n+1) ^2 −2a_n a_(n+1) −a_n  = 0 , ∀ n≥ 1     than the sum of series Σ_(n=1) ^∞  (a_n /3^(n ) )  lies in the interval    (A)  (1,2]    (B)  (2,3]    (C)  (3,4]    (D)  (4,5]
for{an}beasequenceofpositiverealnumberssuchthata1=1,an+122anan+1an=0,n1thanthesumofseriesn=1an3nliesintheinterval(A)(1,2](B)(2,3](C)(3,4](D)(4,5]
Commented by Frix last updated on 17/Oct/23
a_(n+1) =a_n +(√(a_n ^2 +a_n )) ⇒ a_n  is strictly increasing  a_(n+1) ∼2a_n +(1/2) for great n ∧ a_(n+1) <2a_n +(1/2)∀n∈N  b_(n+1) =2b_n +(1/2)∧b_1 =1 ⇒ b_n =((2^n 3−2)/4)  a_n <b_n   Σ_(n≥1)  (b_n /3^n ) =lim_(n→∞)  ((5/4)+(1/(3^n 4))−(2^(n−1) /3^(n−1) )) =(5/4)  ⇒  Σ_(n≥1)  (a_n /3^n ) <(5/4)
an+1=an+an2+ananisstrictlyincreasingan+12an+12forgreatnan+1<2an+12nNbn+1=2bn+12b1=1bn=2n324an<bnn1bn3n=limn(54+13n42n13n1)=54n1an3n<54
Commented by Frix last updated on 17/Oct/23
Same path with b_2 =1+(√2)=a_2  ⇒ Σ_(n≥1)  (a_n /3^n ) <(3/4)+((√2)/3)
Samepathwithb2=1+2=a2n1an3n<34+23
Commented by mr W last updated on 17/Oct/23
a_n =(1/(2^(1/2^(n−1) ) −1))
an=1212n11
Commented by universe last updated on 17/Oct/23
sir how to find this result ?
sirhowtofindthisresult?
Commented by mr W last updated on 17/Oct/23
a_(n+1) ^2 −2a_(n+1) a_n −a_n =0  ((1/a_(n+1) ))^2 +(2/a_(n+1) )−(1/a_n )  let b_n =(1/a_n )  b_(n+1) ^2 +2b_(n+1) −b_n =0  b_(n+1) =−1+(√(1+b_n ))  b_(n+1) +1=(√(b_n +1))  let c_n =b_n +1=(1/a_n )+1  ⇒c_(n+1) =c_n ^(1/2)   ⇒c_n =(c_(n−1) )^(1/2) =(c_(n−2) )^(1/2^2 ) =...=c_1 ^(1/2^(n−1) )   c_1 =(1/a_1 )+1=(1/1)+1=2  ⇒c_n =2^(1/2^(n−1) ) =(1/a_n )+1  ⇒a_n =(1/(2^(1/2^(n−1) ) −1))
an+122an+1anan=0(1an+1)2+2an+11anletbn=1anbn+12+2bn+1bn=0bn+1=1+1+bnbn+1+1=bn+1letcn=bn+1=1an+1cn+1=cn12cn=(cn1)12=(cn2)122==c112n1c1=1a1+1=11+1=2cn=212n1=1an+1an=1212n11
Commented by Frix last updated on 18/Oct/23
Nice!  This can be written as  a_n =Σ_(k=0) ^(2^(n−1) −1)  2^(k/2^(n−1) )   a_1 =2^(0/1) =1  a_2 =2^(0/2) +2^(1/2)   a_3 =2^(0/4) +2^(1/4) +2^(2/4) +2^(3/4)   a_4 =2^(0/8) +2^(1/8) +2^(2/8) +2^(3/8) +2^(4/8) +2^(5/8) +2^(6/8) +2^(7/8)   ...
Nice!Thiscanbewrittenasan=2n11k=02k2n1a1=201=1a2=202+212a3=204+214+224+234a4=208+218+228+238+248+258+268+278
Commented by universe last updated on 18/Oct/23
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *