Question Number 198367 by universe last updated on 18/Oct/23
$$\:\:\mathrm{if}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{{x}^{\mathrm{2}} −\left({b}+\mathrm{1}\right){x}+{b}}{{x}^{\mathrm{2}} −\left({a}+\mathrm{1}\right){x}+{a}}\:\:\left({a}\neq{b}\:\&\:{a},{b}\:\in\:\mathbb{R}\:\sim\:\left\{\mathrm{1}\right\}\right) \\ $$$$\:\:\mathrm{can}\:\mathrm{take}\:\mathrm{all}\:\mathrm{values}\:\mathrm{except}\:\mathrm{two}\:\mathrm{values}\:\alpha\:\&\:\beta \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\alpha+\beta\:=\:\mathrm{0}\:\:\mathrm{then}\:\mid\frac{\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} −\mathrm{8}}{\mathrm{ab}}\mid\:\:=\:\:?? \\ $$
Commented by Frix last updated on 18/Oct/23
$${y}=\frac{{x}^{\mathrm{2}} −\left({b}+\mathrm{1}\right){x}+{b}}{{x}^{\mathrm{2}} −\left({a}+\mathrm{1}\right){x}+{a}}=\frac{\left({x}−\mathrm{1}\right)\left({x}−{b}\right)}{\left({x}−\mathrm{1}\right)\left({x}−{a}\right)}=\frac{{x}−{b}}{{x}−{a}} \\ $$$${x}\neq\mathrm{1}\wedge{x}\neq{a} \\ $$$$\Leftrightarrow \\ $$$${x}=\frac{{ay}−{b}}{{y}−\mathrm{1}}\:\Rightarrow\:{y}\neq\mathrm{1} \\ $$$$\mathrm{There}'\mathrm{s}\:\mathrm{only}\:\mathrm{1}\:\mathrm{value}\:{f}\left({x}\right)\:\mathrm{cannot}\:\mathrm{take}. \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{values}\:{x}\:\mathrm{cannot}\:\mathrm{take},\:\mathrm{these} \\ $$$$\mathrm{are}\:\mathrm{1},\:{a} \\ $$
Commented by universe last updated on 18/Oct/23
Commented by universe last updated on 18/Oct/23
$${answer}\:{is}\:\mathrm{6} \\ $$
Commented by Frix last updated on 18/Oct/23
$$\mathrm{This}\:\mathrm{question}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense}. \\ $$
Commented by Tinku Tara last updated on 19/Oct/23
$$\mathrm{for}\:\mathrm{a}=\mathrm{b},\:{y}=\mathrm{1}.\:\mathrm{So}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{case}\:\mathrm{when}\:\mathrm{y}=\mathrm{1} \\ $$
Commented by Frix last updated on 19/Oct/23
$$\mathrm{But}\:\mathrm{it}\:\mathrm{says}\:{a}\neq{b} \\ $$
Commented by Tinku Tara last updated on 19/Oct/23
$$\mathrm{Correct},\:\mathrm{commented}\:\mathrm{without} \\ $$$$\mathrm{readimg}\:\mathrm{question} \\ $$