Menu Close

let-a-R-z-C-resolve-z-1-n-e-ipina-deduce-that-P-n-k-0-n-1-sin-a-kpi-n-




Question Number 198357 by pticantor last updated on 18/Oct/23
let  a∈R, z∈C  resolve   (z+1)^n =e^(iπna)   deduce that P_n =Π_(k=0) ^(n−1) sin(a+((kπ)/n))
$$\boldsymbol{{let}}\:\:\boldsymbol{{a}}\in\mathbb{R},\:\boldsymbol{{z}}\in\mathbb{C} \\ $$$$\boldsymbol{{resolve}}\: \\ $$$$\left(\boldsymbol{{z}}+\mathrm{1}\right)^{\boldsymbol{{n}}} =\boldsymbol{{e}}^{\boldsymbol{{i}}\pi\boldsymbol{{na}}} \\ $$$$\boldsymbol{{deduce}}\:\boldsymbol{{that}}\:\boldsymbol{{P}}_{\boldsymbol{{n}}} =\underset{{k}=\mathrm{0}} {\overset{\boldsymbol{{n}}−\mathrm{1}} {\prod}}\boldsymbol{{sin}}\left(\boldsymbol{{a}}+\frac{\boldsymbol{{k}}\pi}{\boldsymbol{{n}}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *