Menu Close

Question-198339




Question Number 198339 by cherokeesay last updated on 18/Oct/23
Answered by witcher3 last updated on 18/Oct/23
didint existe   (x,y)=((1/n),2−(1/n));n≥1  n→∞  (1+(1/x^2 )+(1/((x+1)^2 )))→∞
$$\mathrm{didint}\:\mathrm{existe}\: \\ $$$$\left(\mathrm{x},\mathrm{y}\right)=\left(\frac{\mathrm{1}}{\mathrm{n}},\mathrm{2}−\frac{\mathrm{1}}{\mathrm{n}}\right);\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{n}\rightarrow\infty \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\right)\rightarrow\infty \\ $$
Commented by cherokeesay last updated on 18/Oct/23
thank you sir !
$${thank}\:{you}\:{sir}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *