Menu Close

Question-198391




Question Number 198391 by mr W last updated on 19/Oct/23
Commented by mr W last updated on 19/Oct/23
prove that BE is bisector of ∠CBD.  (B, E are touching points)
$${prove}\:{that}\:{BE}\:{is}\:{bisector}\:{of}\:\angle{CBD}. \\ $$$$\left({B},\:{E}\:{are}\:{touching}\:{points}\right) \\ $$
Answered by MM42 last updated on 19/Oct/23
A=(1/2)(CE^⌢ −BE^⌢ )=B_1 −C   (i)  B_1 +B_2 =(1/2)(BE^⌢ +BD^⌢ )=C+A   (ii)  (i),(ii)⇒B_1 =B_2 +B_3   ✓
$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left({C}\overset{\frown} {{E}}−{B}\overset{\frown} {{E}}\right)={B}_{\mathrm{1}} −{C}\:\:\:\left({i}\right) \\ $$$${B}_{\mathrm{1}} +{B}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left({B}\overset{\frown} {{E}}+{B}\overset{\frown} {{D}}\right)={C}+{A}\:\:\:\left({ii}\right) \\ $$$$\left({i}\right),\left({ii}\right)\Rightarrow{B}_{\mathrm{1}} ={B}_{\mathrm{2}} +{B}_{\mathrm{3}} \:\:\checkmark \\ $$$$ \\ $$
Commented by MM42 last updated on 19/Oct/23
Commented by mr W last updated on 19/Oct/23
great!
$${great}! \\ $$
Commented by MM42 last updated on 19/Oct/23
 ⋛
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$
Answered by mr W last updated on 19/Oct/23
Commented by mr W last updated on 19/Oct/23
γ=α+β
$$\gamma=\alpha+\beta \\ $$
Commented by MM42 last updated on 19/Oct/23
 ⋛
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *