Question Number 198391 by mr W last updated on 19/Oct/23
Commented by mr W last updated on 19/Oct/23
$${prove}\:{that}\:{BE}\:{is}\:{bisector}\:{of}\:\angle{CBD}. \\ $$$$\left({B},\:{E}\:{are}\:{touching}\:{points}\right) \\ $$
Answered by MM42 last updated on 19/Oct/23
$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left({C}\overset{\frown} {{E}}−{B}\overset{\frown} {{E}}\right)={B}_{\mathrm{1}} −{C}\:\:\:\left({i}\right) \\ $$$${B}_{\mathrm{1}} +{B}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left({B}\overset{\frown} {{E}}+{B}\overset{\frown} {{D}}\right)={C}+{A}\:\:\:\left({ii}\right) \\ $$$$\left({i}\right),\left({ii}\right)\Rightarrow{B}_{\mathrm{1}} ={B}_{\mathrm{2}} +{B}_{\mathrm{3}} \:\:\checkmark \\ $$$$ \\ $$
Commented by MM42 last updated on 19/Oct/23
Commented by mr W last updated on 19/Oct/23
$${great}! \\ $$
Commented by MM42 last updated on 19/Oct/23
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$
Answered by mr W last updated on 19/Oct/23
Commented by mr W last updated on 19/Oct/23
$$\gamma=\alpha+\beta \\ $$
Commented by MM42 last updated on 19/Oct/23
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$