Menu Close

A-nice-series-If-n-2-1-n-2-n-1-pi-tan-api-b-find-the-value-of-b-a-




Question Number 198496 by mnjuly1970 last updated on 21/Oct/23
           A nice  series    If ,  Ω = Σ_(n=2) ^∞  (( 1)/(n^( 2)  +n −1)) =(( π tan( aπ ))/( b))       ⇒ find the value of   (b/a) = ?
AniceseriesIf,Ω=n=21n2+n1=πtan(aπ)bfindthevalueofba=?
Commented by Hridiana last updated on 21/Oct/23
(3/(a−1))+∫5−bdb
3a1+5bdb
Answered by mr W last updated on 21/Oct/23
Ω=Σ_(n=2) ^∞ (1/(n^2 +n−1))=Σ_(n=1) ^∞ (1/(n^2 +n−1))−1  Σ_(n=1) ^∞ (1/(n^2 +n−1))  =Σ_(n=1) ^∞ (1/((n−p)(n−q)))  with p, q=((−1±(√5))/2) and p+q=−1, pq=−1  =(1/(p−q))Σ_(n=1) ^∞ ((1/(n−p))−(1/(n−q)))  =(1/(p−q))[ψ(1−q)−ψ(1−p)]  =(1/(p−q))[ψ(1+1+p)−ψ(1−p)]  =(1/(p−q))[ψ(1+p)+(1/(1+p))−ψ(1−p)]  =(1/(q−p))[ψ(p)+(1/p)+(1/(1+p))−ψ(p)−π cot pπ]  =(1/(p−q))[(1/p)+(1/(1+p))−π cot pπ]  =(1/(p−q))[(1/p)−(1/q)−π cot pπ]  =(1/(p−q))[((q−p)/(pq))−π cot pπ]  =−(1/(pq))−(π/(p−q)) cot pπ  =1−(π/( (√5))) cot (((−1+(√5))π)/2)  =1+(π/( (√5))) cot ((π/2)−(((√5)π)/2))  =1+(π/( (√5))) tan (((√5)π)/2)  Ω=1+(π/( (√5))) tan (((√5)π)/2)−1  Ω=(π/( (√5))) tan (((√5)π)/2)=((πtan (aπ))/b)  ⇒a=((√5)/2), b=(√5) ⇒(b/a)=2
Ω=n=21n2+n1=n=11n2+n11n=11n2+n1=n=11(np)(nq)withp,q=1±52andp+q=1,pq=1=1pqn=1(1np1nq)=1pq[ψ(1q)ψ(1p)]=1pq[ψ(1+1+p)ψ(1p)]=1pq[ψ(1+p)+11+pψ(1p)]=1qp[ψ(p)+1p+11+pψ(p)πcotpπ]=1pq[1p+11+pπcotpπ]=1pq[1p1qπcotpπ]=1pq[qppqπcotpπ]=1pqπpqcotpπ=1π5cot(1+5)π2=1+π5cot(π25π2)=1+π5tan5π2Ω=1+π5tan5π21Ω=π5tan5π2=πtan(aπ)ba=52,b=5ba=2
Commented by mnjuly1970 last updated on 21/Oct/23
so nice solution sir W    Bravo
sonicesolutionsirWBravo
Commented by Hridiana last updated on 21/Oct/23
4+1x(√(x+1))
4+1xx+1
Commented by HomeAlone last updated on 21/Oct/23

Leave a Reply

Your email address will not be published. Required fields are marked *