Menu Close

f-tan-x-2f-cot-x-4x-f-x-




Question Number 198562 by cortano12 last updated on 22/Oct/23
   f(tan x)+ 2f(cot x) = 4x      f ′(x)= ?
f(tanx)+2f(cotx)=4xf(x)=?
Answered by dimentri last updated on 22/Oct/23
 let x=(π/2)−t    f(cot t) +2 f(tan t)= 2π−4t     { ((f(cot x)+2 f(tan x)=2π−4x)),((2 f(cot t)+f(tan x)= 4x)) :}     { ((2f(cot x)+4f(tan x)=4π−8x)),((2f(cot x)+f(tan x)= 4x)) :}   ⇔ f(tan x)=((4π−12x)/3)   ⇔ f(x)= ((4π−12 tan^(−1) x)/3)
letx=π2tf(cott)+2f(tant)=2π4t{f(cotx)+2f(tanx)=2π4x2f(cott)+f(tanx)=4x{2f(cotx)+4f(tanx)=4π8x2f(cotx)+f(tanx)=4xf(tanx)=4π12x3f(x)=4π12tan1x3

Leave a Reply

Your email address will not be published. Required fields are marked *