Menu Close

How-many-numbers-with-a-maximum-of-5-digits-greater-than-4000-can-be-formed-with-the-digits-2-3-4-5-6-if-repetition-is-allowed-for-2-and-3-only-




Question Number 198576 by mr W last updated on 22/Oct/23
How many numbers with a maximum of 5 digits, greater than 4000, can be formed with the digits 2, 3, 4, 5, 6; if repetition is allowed for 2 and 3 only?
How many numbers with a maximum of 5 digits, greater than 4000, can be formed with the digits 2, 3, 4, 5, 6; if repetition is allowed for 2 and 3 only?

Commented by mr W last updated on 22/Oct/23
Q198242 reposted for alternative  solutions
Q198242repostedforalternativesolutions
Commented by MM42 last updated on 22/Oct/23
Sir W  you are right.i was not careful.  thank you for your consideration.
SirWyouareright.iwasnotcareful.thankyouforyourconsideration.
Commented by mr W last updated on 22/Oct/23
you are welcome sir!
youarewelcomesir!
Commented by nikif99 last updated on 23/Oct/23
  A more complicated solution    I. four digit numbers   determinant (((1st),(                        2nd),(        3rd),( 4th),(      cases^★ )))  4or5or6^★  { ((2or3    { ((2or3 { ((2or3       (3×2×2×2=24))),((5or6       (24))) :})),((5or6 { ((2or3       (24))),((6              (12))) :})) :})),((5or6^★  { ((2or3 { ((2or3       (24))),((6^★            (12))) :})),((6         { ((2or3      (12))),((  ×          (0))) :})) :})) :}  ★: the product of all possible cases through a routing of digits.  Subtotal 132    II. five digit numbers   determinant (((1st),(                                   2nd),(                          3rd),(             4th),(         5th),(    cases)))   determinant (((2or3 { ((2or3            { ((2or3        { ((2or3        { ((2or3         (32))),((4or5or6  (48))) :})),((4or5or6 { ((2or3         (48))),((5or6         (48))) :})) :})),((4or5or6 { ((2or3        { ((2or3          (48))),((5or6          (48))) :})),((5or6        { ((2or3           (48))),((6                  (24))) :})) :})) :})),((4or5or6^★  { ((2or3         { ((2or3       { ((2or3           (48))),((5or6           (48))) :})),((5or6       { ((2or3           (48))),((6                  (24))) :})) :})),((5or6^★       { ((2or3       { ((2or3          (48))),((6^★               (24))) :})),((6               { ((2                  (12))),((3                  (12))) :})) :})) :})) :})))  Subtotal 608  4or5or6^★  { ((2or3       { ((2or3 { ((2or3             { ((2or3       (48))),((5or6       (48))) :})),((5or6             { ((2or3       (48))),((6              (24))) :})) :})),((5or6 { ((2or3             { ((2or3       (48))),((6              (24))) :})),((6                     { ((2             (12))),((3             (12))) :})) :})) :})),((5or6^★        { ((2or3 { ((2or3             { ((2or3      (48))),((6             (24))) :})),((6^★                     { ((2              (8))),((3              (8))) :})) :})),((6        { ((2                     { ((2              (8))),((3              (8))) :})),((3                     { ((2              (8))),((3              (8))) :})) :})) :})) :}  Subtotal 384  Total 1124    ★: if for exemple 4 is selected initialy, then one of {5,6} is selected next,  and finally the last one.
AmorecomplicatedsolutionI.fourdigitnumbers1st2nd3rd4thcases4or5or6{2or3{2or3{2or3(3×2×2×2=24)5or6(24)5or6{2or3(24)6(12)5or6{2or3{2or3(24)6(12)6{2or3(12)×(0):theproductofallpossiblecasesthrougharoutingofdigits.Subtotal132II.fivedigitnumbers1st2nd3rd4th5thcases2or3{2or3{2or3{2or3{2or3(32)4or5or6(48)4or5or6{2or3(48)5or6(48)4or5or6{2or3{2or3(48)5or6(48)5or6{2or3(48)6(24)4or5or6{2or3{2or3{2or3(48)5or6(48)5or6{2or3(48)6(24)5or6{2or3{2or3(48)6(24)6{2(12)3(12)Subtotal6084or5or6{2or3{2or3{2or3{2or3(48)5or6(48)5or6{2or3(48)6(24)5or6{2or3{2or3(48)6(24)6{2(12)3(12)5or6{2or3{2or3{2or3(48)6(24)6{2(8)3(8)6{2{2(8)3(8)3{2(8)3(8)Subtotal384Total1124:ifforexemple4isselectedinitialy,thenoneof{5,6}isselectednext,andfinallythelastone.
Commented by mr W last updated on 23/Oct/23
method using generating function  seems to be camplicated at first  glance, but actually this solution  method  is general and thus very  powerful. try to find the number  of 7−digit numbers with exactly  the same conditions. can you give  a solution for this case?
methodusinggeneratingfunctionseemstobecamplicatedatfirstglance,butactuallythissolutionmethodisgeneralandthusverypowerful.trytofindthenumberof7digitnumberswithexactlythesameconditions.canyougiveasolutionforthiscase?
Commented by mr W last updated on 23/Oct/23
Commented by nikif99 last updated on 23/Oct/23
It is quite difficult to manage manually  such a tree with 7 levels.  Trying another approach, I used   self−developped software via Fortran  and I found 8.864 cases for 7−digit   numbers (and 3.040 for 6−digit).  P.S. I do not know what other members  see on my solution comment;   I personally see only the title in bold  (“4−digit numbers”) without analysis  with opening curly braces.
Itisquitedifficulttomanagemanuallysuchatreewith7levels.Tryinganotherapproach,IusedselfdeveloppedsoftwareviaFortranandIfound8.864casesfor7digitnumbers(and3.040for6digit).P.S.Idonotknowwhatothermembersseeonmysolutioncomment;Ipersonallyseeonlythetitleinbold(4digitnumbers)withoutanalysiswithopeningcurlybraces.
Commented by mr W last updated on 23/Oct/23
i can also only see the title in bold,  nothing follows.
icanalsoonlyseethetitleinbold,nothingfollows.
Commented by mr W last updated on 23/Oct/23
8864 numbers with 7 digits, this is  correct, thanks alot! i also got this  result, very easily with my method  applying generating function. the  result is the coefficient of x^7  term  in 7!e^(2x) (1+x)^3 , which is 8864.  similarly for 6−digit numbers it is  the coefficient of x^6  term in   6!e^(2x) (1+x)^3 , which is 3040.
8864numberswith7digits,thisiscorrect,thanksalot!ialsogotthisresult,veryeasilywithmymethodapplyinggeneratingfunction.theresultisthecoefficientofx7termin7!e2x(1+x)3,whichis8864.similarlyfor6digitnumbersitisthecoefficientofx6termin6!e2x(1+x)3,whichis3040.
Commented by nikif99 last updated on 23/Oct/23
Commented by mr W last updated on 23/Oct/23
nice prepared!
niceprepared!
Answered by mr W last updated on 23/Oct/23
2 and 3 can be used zero time, one  time or any times ⇒(1+x+x^2 +x^3 +...)  4, 5 and 6 can only be used zero time   or one time ⇒(1+x)    5−digit numbers:  number of such numbers is the  coefficient of x^5  term in  5!(1+x+(x^2 /(2!))+(x^3 /(3!))+...)^2 (1+x)^3   =5!e^(2x) (1+x)^3   which is 992.   that means we can form 992 such   5−digit numbers.
2and3canbeusedzerotime,onetimeoranytimes(1+x+x2+x3+)4,5and6canonlybeusedzerotimeoronetime(1+x)5digitnumbers:numberofsuchnumbersisthecoefficientofx5termin5!(1+x+x22!+x33!+)2(1+x)3=5!e2x(1+x)3whichis992.thatmeanswecanform992such5digitnumbers.
Commented by Tawa11 last updated on 23/Oct/23
Thanks sir.  I appreciate your time, God bless you sir.
Thankssir.Iappreciateyourtime,Godblessyousir.
Commented by mr W last updated on 22/Oct/23
Commented by mr W last updated on 22/Oct/23
4−digit numbers:  the first digit must be 4, 5 or 6.  we select at first the first digit,  there are 3 ways. then we form   3−digit numbers with the other 4  digits. similarly to above, the number  of such numbers is the coefficient  of x^3  term in 3!e^(2x) (1+x)^2 , which is  44. so totally we can form   3×44=132 valid 4−digit numbers.
4digitnumbers:thefirstdigitmustbe4,5or6.weselectatfirstthefirstdigit,thereare3ways.thenweform3digitnumberswiththeother4digits.similarlytoabove,thenumberofsuchnumbersisthecoefficientofx3termin3!e2x(1+x)2,whichis44.sototallywecanform3×44=132valid4digitnumbers.
Commented by mr W last updated on 22/Oct/23
Commented by mr W last updated on 22/Oct/23
all together: 992+132=1124 ✓
alltogether:992+132=1124

Leave a Reply

Your email address will not be published. Required fields are marked *