Menu Close

lim-x-pi-2n-sin-2nx-1-cos-nx-4n-2-x-2-pi-2-




Question Number 198572 by cortano12 last updated on 22/Oct/23
     lim_(x→(π/(2n)))  ((√((sin 2nx)/(1+cos nx)))/(4n^2 x^2 −π^2 )) =?
limxπ2nsin2nx1+cosnx4n2x2π2=?
Answered by MM42 last updated on 22/Oct/23
(π/(2n))−x=u  lim_(u→0)  ((√((sin2n((π/(2n))−u))/(1+cosn((π/(2n))−u))))/((2n((π/(2n))−u)−π)(2n((π/(2n))−u)+π)))  =lim_(u→0)  ((√((sin(2nu))/(1+sin(nu))))/((−2nu)(2π−2nu)))  =lim_(u→0)  ((√((sin(2nu))/(1+sin(nu))))/((−2nu)(2π−2nu)))= { ((+∞    if   u→0^− )),((−∞    if    u→0^+ )) :}
π2nx=ulimu0sin2n(π2nu)1+cosn(π2nu)(2n(π2nu)π)(2n(π2nu)+π)=limu0sin(2nu)1+sin(nu)(2nu)(2π2nu)=limu0sin(2nu)1+sin(nu)(2nu)(2π2nu)={+ifu0ifu0+

Leave a Reply

Your email address will not be published. Required fields are marked *