Question Number 198575 by ajfour last updated on 22/Oct/23
Commented by ajfour last updated on 22/Oct/23
$${p}^{\mathrm{3}} ={p}+{c}\:\:\:\:\:\forall\:\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\:\:\:.\:{Find}\:{p}\:{in} \\ $$$${surd}\:{form}. \\ $$
Commented by mr W last updated on 22/Oct/23
$${i}\:{don}'{t}\:{think}\:{it}\:{is}\:{possible}. \\ $$
Commented by ajfour last updated on 22/Oct/23
Earlier i did not understand why so is not possible. Now i do understand, but yet trying out of habit.
Answered by ajfour last updated on 22/Oct/23
$${k}={h}^{\mathrm{3}} −{h}−{c} \\ $$$${line}\:{equation}:\:\:{y}=\left(\frac{{k}−{t}}{{h}}\right){x}+{t} \\ $$$${s}^{\mathrm{2}} =\frac{\left(\frac{{k}−{t}}{{h}}\right){p}+{t}}{\mathrm{1}+\left(\frac{{k}−{t}}{{h}}\right)^{\mathrm{2}} } \\ $$$${p}={s}^{\mathrm{2}} \left(\frac{{h}}{{k}−{t}}+\frac{{k}−{t}}{{h}}\right)−\left(\frac{{ht}}{{k}−{t}}\right) \\ $$$$\:\:{p}=\frac{\left({s}^{\mathrm{2}} −{t}\right){h}^{\mathrm{2}} +{s}^{\mathrm{2}} \left({h}^{\mathrm{3}} −{h}−{c}−{t}\right)^{\mathrm{2}} }{{h}\left({h}^{\mathrm{3}} −{h}−{c}−{t}\right)} \\ $$$${say}\:\:{p}=\frac{\left({S}−{t}\right){h}^{\mathrm{2}} +{S}\left({H}−{t}\right)^{\mathrm{2}} }{{h}\left({H}−{t}\right)} \\ $$$${p}^{\mathrm{3}} ={p}+{c} \\ $$$$\left({S}−{t}\right)^{\mathrm{3}} {h}^{\mathrm{6}} +{S}^{\mathrm{3}} \left({H}−{t}\right)^{\mathrm{6}} \\ $$$$\:\:\:\:\:\:+\mathrm{3}{h}^{\mathrm{4}} {S}\left({S}−{t}\right)^{\mathrm{2}} \left({H}−{t}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:+\mathrm{3}{h}^{\mathrm{2}} {S}^{\mathrm{2}} \left({S}−{t}\right)\left({H}−{t}\right)^{\mathrm{4}} \\ $$$$\:\:\:\:=\:{h}^{\mathrm{3}} \left({S}−{t}\right)\left({H}−{t}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} {S}\left({H}−{t}\right)^{\mathrm{4}} \\ $$$$\:\:\:\:\:+{ch}^{\mathrm{3}} \left({H}−{t}\right)^{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$${S}^{\mathrm{3}} \left\{{h}^{\mathrm{6}} +\left({H}−{t}\right)^{\mathrm{6}} +\mathrm{3}{h}^{\mathrm{4}} \left({H}−{t}\right)^{\mathrm{2}} +\mathrm{3}{h}^{\mathrm{2}} \left({H}−{t}\right)^{\mathrm{4}} \right\} \\ $$$$+{S}^{\mathrm{2}} \left\{−\mathrm{3}{h}^{\mathrm{6}} {t}−\mathrm{6}{h}^{\mathrm{4}} {t}\left({H}−{t}\right)^{\mathrm{2}} −\mathrm{3}{h}^{\mathrm{2}} {t}\left({H}−{t}\right)^{\mathrm{4}} \right\} \\ $$$$+{S}\left\{\mathrm{3}{h}^{\mathrm{6}} {t}^{\mathrm{2}} +\mathrm{3}{h}^{\mathrm{4}} {t}^{\mathrm{2}} \left({H}−{t}\right)^{\mathrm{2}} −{h}^{\mathrm{3}} \left({H}−{t}\right)^{\mathrm{2}} \right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:−{h}^{\mathrm{2}} \left({H}−{t}\right)^{\mathrm{4}} \right\} \\ $$$$−{h}^{\mathrm{3}} \left\{{h}^{\mathrm{3}} {t}^{\mathrm{3}} +{t}\left({H}−{t}\right)^{\mathrm{2}} −{c}\left({H}−{t}\right)^{\mathrm{3}} \right\}=\mathrm{0} \\ $$$$\Rightarrow\:\:{h}^{\mathrm{3}} {z}^{\mathrm{3}} +\frac{{hz}}{{h}}={c}\:\:\:\:{if}\:\:\:{z}=\frac{{t}}{{H}−{t}} \\ $$$${D}=\mathrm{0}\:\:\:\Rightarrow\:\:\:\frac{{c}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{27}{h}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{h}=−\left(\frac{\mathrm{27}{c}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{3}} \:\:\:\&\:\:{hz}=\mathrm{2}\left(\frac{{c}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\Rightarrow\:\:{z}^{\mathrm{3}} =\mathrm{4}{c}×\left(−\frac{\mathrm{4}}{\mathrm{27}{c}^{\mathrm{2}} }\right)=−\frac{\mathrm{16}}{\mathrm{27}{c}} \\ $$$${z}=\frac{{t}}{{H}−{t}}\:\:\:\Rightarrow\:\:\:{t}=\frac{{Hz}}{\mathrm{1}+{z}}=\frac{\left({h}^{\mathrm{3}} −{h}−{c}\right){z}}{\mathrm{1}+{z}} \\ $$$$\:\:\:{t}=\frac{−\frac{\mathrm{27}{c}^{\mathrm{2}} }{\mathrm{4}}+\left(\frac{\mathrm{27}{c}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{3}} −{c}}{\mathrm{1}−\left(\frac{\mathrm{27}{c}}{\mathrm{16}}\right)^{\mathrm{1}/\mathrm{3}} } \\ $$$${t},\:{h}\:{obtained};\:{S}\:=\mathrm{0},\:{S}_{\mathrm{1}} ,\:{S}_{\mathrm{2}} \\ $$$${p}=\frac{\left({S}−{t}\right){h}^{\mathrm{2}} +{S}\left({H}−{t}\right)^{\mathrm{2}} }{{h}\left({H}−{t}\right)} \\ $$$$\:\:{havnt}\:{checked}\:{though}! \\ $$