Menu Close

0-e-at-e-at-e-pit-e-pit-dt-




Question Number 198695 by universe last updated on 23/Oct/23
      ∫_0 ^∞ ((e^(at) −e^(−at) )/(e^(πt) −e^(−πt) )) dt   =   ??
0eateateπteπtdt=??
Answered by witcher3 last updated on 25/Oct/23
existe ⇔a∈]−π,π[  f(a)=∫_0 ^∞ ((e^(at) −e^(−at) )/(e^(πt) −e^(−πt) ))dt,f(−a)=−f(a)  ∀t∈[0,a[  ∫_0 ^∞ ((e^(at) −e^(−at) )/(e^(πt) −e^(−πt) ))dt=∫_0 ^∞ (e^(at) −e^(−at) )e^(−πt) Σe^(−2nπt) dt  =Σ_(n≥0) ∫_0 ^∞ e^(−(π−a+2nπ)t) −e^(−(a+π+2nπ)t) dt  =Σ_(n≥0) ((1/(π−a+2nπ))−(1/(a+π+2nπ)))  =(1/(2π))Σ_(n≥0) ((1/(n+(1/2)−(a/(2π))))−(1/(n+(1/2)+(a/(2π)))))  =(1/(2π))Σ_(n≥0) ((1/(n+1))−(1/(n+(1/2)+(a/(2π))))−((1/(n+1))−(1/(n+(1/2)−(a/(2π))))))  =(1/(2π))Σ_(n≥0) (1/(n+1))−(1/(n+(1/2)+(a/(2π))))−(1/(2π))Σ_(n≥0) (1/(n+1))−(1/(n+(1/2)−(a/(2π))))  =(1/(2π))(Ψ((1/2)+(a/(2π)))−Ψ((1/2)−(a/(2π))))  =(1/(2π))(Ψ(1−((1/2)−(a/(2π))))−Ψ((1/2)−(a/(2π))))  =(1/(2π))(.πcot(π((1/2)−(a/(2π))))=((tan((a/2)))/2)  ∫_0 ^∞ ((e^(ax) −e^(−ax) )/(e^(πx) −e^(−πx) ))dx=((tan ((a/2)))/2)
existea]π,π[f(a)=0eateateπteπtdt,f(a)=f(a)t[0,a[0eateateπteπtdt=0(eateat)eπtΣe2nπtdt=n00e(πa+2nπ)te(a+π+2nπ)tdt=n0(1πa+2nπ1a+π+2nπ)=12πn0(1n+12a2π1n+12+a2π)=12πn0(1n+11n+12+a2π(1n+11n+12a2π))=12πn01n+11n+12+a2π12πn01n+11n+12a2π=12π(Ψ(12+a2π)Ψ(12a2π))=12π(Ψ(1(12a2π))Ψ(12a2π))=12π(.πcot(π(12a2π))=tan(a2)20eaxeaxeπxeπxdx=tan(a2)2

Leave a Reply

Your email address will not be published. Required fields are marked *