Question Number 198785 by sonukgindia last updated on 24/Oct/23
Answered by AST last updated on 24/Oct/23
$$\frac{\mathrm{1}}{\mathrm{197}}\equiv{x}\left({mod}\:\mathrm{3000}\right)\Rightarrow\mathrm{197}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{3000}\right) \\ $$$$\mathrm{197}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{3}\right)\Rightarrow−{x}\overset{\mathrm{3}} {\equiv}\mathrm{1}\Rightarrow{x}\overset{\mathrm{3}} {\equiv}\mathrm{2} \\ $$$$\mathrm{197}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{8}\right)\Rightarrow\mathrm{5}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{8}\right)\Rightarrow{x}\overset{\mathrm{8}} {\equiv}\mathrm{5} \\ $$$$\mathrm{197}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{125}\right)\Rightarrow\mathrm{72}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{125}\right) \\ $$$$\Rightarrow−\mathrm{53}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{125}\right)\Rightarrow\left[\mathrm{3}{x}\overset{\mathrm{25}} {\equiv}−\mathrm{1}\Rightarrow{x}\overset{\mathrm{25}} {\equiv}\mathrm{8}\right] \\ $$$$\mathrm{53}{x}\overset{\mathrm{125}} {\equiv}\mathrm{124}+\mathrm{125}×\mathrm{13}\Rightarrow{x}\equiv\mathrm{33}\left({mod}\:\mathrm{125}\right) \\ $$$${x}=\mathrm{3}{k}+\mathrm{2};{x}=\mathrm{8}{q}+\mathrm{5}\Rightarrow\mathrm{8}{q}+\mathrm{5}\equiv\mathrm{2}\left({mod}\:\mathrm{3}\right) \\ $$$$\Rightarrow{q}\equiv\mathrm{0}\left({mod}\:\mathrm{3}\right)\Rightarrow{x}=\mathrm{24}{v}+\mathrm{5}\equiv\mathrm{33}\left({mod}\:\mathrm{125}\right) \\ $$$$\Rightarrow\mathrm{24}{v}\equiv\mathrm{28}\left({mod}\:\mathrm{125}\right)\Rightarrow\mathrm{6}{v}\overset{\mathrm{125}} {\equiv}\mathrm{7}\Rightarrow{v}\equiv\mathrm{22}\left({mod}\:\mathrm{125}\right) \\ $$$$\Rightarrow{x}=\mathrm{24}\left(\mathrm{125}{y}+\mathrm{22}\right)+\mathrm{5}\Rightarrow{x}\equiv\mathrm{24}×\mathrm{22}+\mathrm{5}=\mathrm{533} \\ $$$$\Rightarrow{x}\equiv\mathrm{533}\left({mod}\:\mathrm{3000}\right) \\ $$
Commented by qaz last updated on 24/Oct/23
$$\mathrm{197}{x}\equiv\mathrm{1}\left({mod}\:\mathrm{3000}\right) \\ $$$$\Rightarrow\mathrm{197}{x}+\mathrm{3000}{a}=\mathrm{1}\:\:\:\Rightarrow\mathrm{3000}{a}=\mathrm{45}{a}\equiv\mathrm{1}\left({mod}\:\mathrm{197}\right) \\ $$$$\Rightarrow\mathrm{45}{a}+\mathrm{197}{b}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{197}{b}=\mathrm{17}{b}\equiv\mathrm{1}\left({mod}\:\mathrm{45}\right) \\ $$$$\Rightarrow\mathrm{17}{b}+\mathrm{45}{c}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{45}{c}=\mathrm{11}{c}\equiv\mathrm{1}\left({mod}\:\mathrm{17}\right) \\ $$$$\Rightarrow\mathrm{11}{c}+\mathrm{17}{d}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{17}{d}\equiv\mathrm{6}{d}\equiv\mathrm{1}\left({mod}\:\mathrm{11}\right) \\ $$$$\Rightarrow{d}\equiv\mathrm{2}\left({mod}\:\mathrm{11}\right) \\ $$$$\Rightarrow{c}\equiv−\mathrm{3}\left({mod}\:\mathrm{17}\right)\:\Rightarrow\:\:{b}\equiv\mathrm{8}\left({mod}\:\mathrm{45}\right)\:\:\:\Rightarrow{a}\equiv−\mathrm{35}\left({mod}\:\mathrm{197}\right)\:\:\:\Rightarrow{x}\equiv\mathrm{533}\left({mod}\:\mathrm{3000}\right) \\ $$
Answered by AST last updated on 24/Oct/23
$$\mathrm{2}.\:{n}^{\mathrm{5}} \equiv\mathrm{155}^{\mathrm{777}^{\mathrm{888}} } \equiv\left(−\mathrm{9}\right)^{\mathrm{777}^{\mathrm{888}} } \:\overset{\mathrm{41}} {\equiv}−\left(\mathrm{9}\right)^{\mathrm{777}^{\mathrm{888}} } \\ $$$$\mathrm{777}^{\mathrm{888}} \equiv\left(\mathrm{17}\right)^{\mathrm{888}} \left({mod}\:\mathrm{40}\right) \\ $$$$\mathrm{17}^{\mathrm{888}} =\mathrm{17}^{\mathrm{16}\left(\mathrm{55}\right)+\mathrm{8}} \equiv\mathrm{7}^{\mathrm{8}} \left({mod}\:\mathrm{40}\right)\equiv\mathrm{9}^{\mathrm{4}} =\mathrm{81}=\mathrm{1}\left({mod}\:\mathrm{40}\right) \\ $$$$\Rightarrow−\left(\mathrm{9}\right)^{\mathrm{777}^{\mathrm{888}} } =−\left(\mathrm{9}\right)^{\mathrm{40}{q}+\mathrm{1}} \equiv−\left(\mathrm{9}\right)^{\mathrm{40}{q}} \mathrm{8}\equiv−\mathrm{9}\left({mod}\:\mathrm{41}\right) \\ $$$$\Rightarrow{n}^{\mathrm{5}} \equiv\mathrm{32}\left({mod}\:\mathrm{41}\right)\Rightarrow{n}\equiv\mathrm{2}\left({mod}\:\mathrm{41}\right) \\ $$
Answered by AST last updated on 24/Oct/23
$$\mathrm{3}.\:{n}^{\mathrm{5}} \equiv\mathrm{6}^{{k}} \left({mod}\:\mathrm{41}\right)\Rightarrow\mathrm{6}^{\mathrm{5}{q}} \equiv\mathrm{6}^{{k}} \left({mod}\:\mathrm{41}\right) \\ $$$$\mathrm{6}^{\mathrm{5}{q}−{k}} \equiv\mathrm{6}^{\mathrm{40}} \left({mod}\:\mathrm{41}\right)\Rightarrow\mathrm{5}{q}\equiv{k}\left({mod}\:\mathrm{40}\right) \\ $$$$\Rightarrow{k}\equiv\mathrm{5}{q}\left({mod}\:\mathrm{40}\right)\Rightarrow{k}\equiv\mathrm{5}{q}\left({mod}\:\mathrm{41}\right)\:{where}\:\mathrm{5}{q}\leqslant\mathrm{40} \\ $$$$\Rightarrow{x}\equiv\mathrm{6}^{\mathrm{0}} ,\mathrm{6}^{\mathrm{5}} ,\mathrm{6}^{\mathrm{10}} ,\mathrm{6}^{\mathrm{15}} ,\mathrm{6}^{\mathrm{20}} ,\mathrm{6}^{\mathrm{25}} ,\mathrm{6}^{\mathrm{30}} ,\mathrm{6}^{\mathrm{35}} \\ $$$${x}\in\left\{\left[\mathrm{1}\right],\left[\mathrm{3}\right],\left[\mathrm{9}\right],\left[\mathrm{14}\right],\left[\mathrm{27}\right],\left[\mathrm{32}\right],\left[\mathrm{38}\right]\right\} \\ $$