Menu Close

sum-of-roots-log-3-x-log-3-2-5-log-x-9-3-log-x-5-




Question Number 198809 by dimentri last updated on 24/Oct/23
     sum of roots    log _3 x + log _3 (2,5) + log _x 9 = 3+ log _x 5
sumofrootslog3x+log3(2,5)+logx9=3+logx5
Answered by a.lgnaoui last updated on 24/Oct/23
((logx)/(log3))+((log(2,5))/(log3))+((log9)/(logx))=3+((log5)/(logx))  (logx)^2 +logx.log(2,5)+2(log3)^2   =3log3logx+log3.log5  posons  logx=z  z^2 +z[log(2,5)−3log3]+log3(2log3−log5)=0    △=[log(2,5)−3log3]^2 −4log3(2log3−log5)    log(2,5)=log(((25)/(10)))=log25−1=2log5−1  z^2 +z(2log5−3log3−1)+log3(2log3−log5)=0    △=(2log5−3log3−1)^2 −8(log3)^2 +           4log3.log5  =1+(log3)^2 −16log3log5+6log3     +4(log5)^2 −4log5  =(2log5−1)^2 +(log3−8log5)^2   =+6log3−64(log5)^2     =−6log5−1)(10log5−1)+      △=6log3−(10log5−1)(6log5+1)+        (8log5−log3)^2     z=(((3log3+1−2log5)±(√(6log3−(6log5+1)(10log5−1)+(8log5−log3)^2 )))/2)             x=e^((3log3−2log5+1)/2) ×e^(±(√(6log3+(8log5−3)^2 −6(log5−1)(6kog5+1))) /2)     ⇒Sum   of roots is                r=e^((3/2)log3−log5+(1/2))
logxlog3+log(2,5)log3+log9logx=3+log5logx(logx)2+logx.log(2,5)+2(log3)2=3log3logx+log3.log5posonslogx=zz2+z[log(2,5)3log3]+log3(2log3log5)=0=[log(2,5)3log3]24log3(2log3log5)log(2,5)=log(2510)=log251=2log51z2+z(2log53log31)+log3(2log3log5)=0=(2log53log31)28(log3)2+4log3.log5=1+(log3)216log3log5+6log3+4(log5)24log5=(2log51)2+(log38log5)2=+6log364(log5)2=6log51)(10log51)+=6log3(10log51)(6log5+1)+(8log5log3)2z=(3log3+12log5)±6log3(6log5+1)(10log51)+(8log5log3)22x=e(3log32log5+1)/2×e±6log3+(8log53)26(log51)(6kog5+1)/2Sumofrootsisr=e32log3log5+12
Commented by mr W last updated on 24/Oct/23
wrong!  x=e^(a±b)   ⇒Σx=e^a (e^b +e^(−b) )≠e^a
wrong!x=ea±bΣx=ea(eb+eb)ea
Commented by a.lgnaoui last updated on 24/Oct/23
yes thanks  i use logaritme base 10   i think that my answer wil be exact   if the we change log by  ln in the   given equation.(c′ est un piege!)
yesthanksiuselogaritmebase10ithinkthatmyanswerwilbeexactifthewechangelogbylninthegivenequation.(cestunpiege!)
Commented by mr W last updated on 24/Oct/23
oui!
oui!
Answered by mr W last updated on 24/Oct/23
 log _3 x + log _3 (2,5)−log_3  3^3 = log _x 5−log_x  9  log_3  ((2.5x)/(27))=log_x  (5/9)  ((ln x+ln (((2.5)/(27))))/(log 3))=((ln (5/9))/(ln x))  (ln x)(ln x+ln ((2.5)/(27)))=(ln 3)(ln (5/9))  let t=ln x  t^2 +(ln ((2.5)/(27)))t−(ln 3)(ln (5/9))=0  t_(1,2) =(1/2)[−ln ((2.5)/(27))±(√((ln ((2.5)/(27)))^2 +4(ln 3)(ln (5/9))))]  t_1 +t_2 =−ln ((2.5)/(27))=ln ((54)/5)  x_(1,2) =e^t_(1,2)    sum of roots:  x_1 +x_2 =e^t_1  +e^t_2  =....    product of roots:  x_1 x_2 =e^t_1  e^t_2  =e^(t_1 +t_2 ) =e^(ln ((54)/5)) =((54)/5)
log3x+log3(2,5)log333=logx5logx9log32.5x27=logx59lnx+ln(2.527)log3=ln59lnx(lnx)(lnx+ln2.527)=(ln3)(ln59)lett=lnxt2+(ln2.527)t(ln3)(ln59)=0t1,2=12[ln2.527±(ln2.527)2+4(ln3)(ln59)]t1+t2=ln2.527=ln545x1,2=et1,2sumofroots:x1+x2=et1+et2=.productofroots:x1x2=et1et2=et1+t2=eln545=545

Leave a Reply

Your email address will not be published. Required fields are marked *