Question Number 198809 by dimentri last updated on 24/Oct/23

Answered by a.lgnaoui last updated on 24/Oct/23
![((logx)/(log3))+((log(2,5))/(log3))+((log9)/(logx))=3+((log5)/(logx)) (logx)^2 +logx.log(2,5)+2(log3)^2 =3log3logx+log3.log5 posons logx=z z^2 +z[log(2,5)−3log3]+log3(2log3−log5)=0 △=[log(2,5)−3log3]^2 −4log3(2log3−log5) log(2,5)=log(((25)/(10)))=log25−1=2log5−1 z^2 +z(2log5−3log3−1)+log3(2log3−log5)=0 △=(2log5−3log3−1)^2 −8(log3)^2 + 4log3.log5 =1+(log3)^2 −16log3log5+6log3 +4(log5)^2 −4log5 =(2log5−1)^2 +(log3−8log5)^2 =+6log3−64(log5)^2 =−6log5−1)(10log5−1)+ △=6log3−(10log5−1)(6log5+1)+ (8log5−log3)^2 z=(((3log3+1−2log5)±(√(6log3−(6log5+1)(10log5−1)+(8log5−log3)^2 )))/2) x=e^((3log3−2log5+1)/2) ×e^(±(√(6log3+(8log5−3)^2 −6(log5−1)(6kog5+1))) /2) ⇒Sum of roots is r=e^((3/2)log3−log5+(1/2))](https://www.tinkutara.com/question/Q198812.png)
Commented by mr W last updated on 24/Oct/23

Commented by a.lgnaoui last updated on 24/Oct/23

Commented by mr W last updated on 24/Oct/23

Answered by mr W last updated on 24/Oct/23
![log _3 x + log _3 (2,5)−log_3 3^3 = log _x 5−log_x 9 log_3 ((2.5x)/(27))=log_x (5/9) ((ln x+ln (((2.5)/(27))))/(log 3))=((ln (5/9))/(ln x)) (ln x)(ln x+ln ((2.5)/(27)))=(ln 3)(ln (5/9)) let t=ln x t^2 +(ln ((2.5)/(27)))t−(ln 3)(ln (5/9))=0 t_(1,2) =(1/2)[−ln ((2.5)/(27))±(√((ln ((2.5)/(27)))^2 +4(ln 3)(ln (5/9))))] t_1 +t_2 =−ln ((2.5)/(27))=ln ((54)/5) x_(1,2) =e^t_(1,2) sum of roots: x_1 +x_2 =e^t_1 +e^t_2 =.... product of roots: x_1 x_2 =e^t_1 e^t_2 =e^(t_1 +t_2 ) =e^(ln ((54)/5)) =((54)/5)](https://www.tinkutara.com/question/Q198818.png)